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Abstract. We prove that the elements of any standard basis of In, where I
is an ideal of a Noetherian local ring and n is a positive integer, have order
bounded by a linear function in n. We deduce from this that the elements of
any standard basis of In in the sense of Grauert-Hironaka, where I is an ideal
of the ring of power series, have order bounded by a polynomial function in n.

The aim of this paper is to study the growth of the orders of the elements of a
standard basis of In, where I is an ideal of a Noetherian local ring. Here we show
that the maximal order of an element of a standard basis of In is bounded by a
linear function in n. For this we prove a linear version of the strong Artin-Rees
lemma for ideals in a Noetherian ring. The main result of this paper is Theorem 3.

First we prove the following proposition inspired by Corollary 3.3 of [4]:

Proposition 1. Let A be a Noetherian ring and let I and J be ideals of A. There
exists an integer λ ≥ 0 such that

∀x ∈ A, ∀n,m ∈ N, n ≥ λm, (xn) ∩ (J + Im) = ((xλm) ∩ (J + Im))(xn−λm).

Proof. Let B := A/J . By Theorem 3.4 of [5], there exists λ such that for any

m ≥ 1, there exists an irredundant primary decomposition Im = Q
(m)
1 ∩ · · · ∩Q

(m)
r

such that if P
(m)
i :=

√
Q

(m)
i , then (P

(m)
i )λm ⊂ Q

(m)
i for 1 ≤ i ≤ m. We denote

by Q
(m)

i the image of Q
(m)
i in A/(J + Im) for 1 ≤ i ≤ r. We denote by P

(m)
i the

inverse image of P
(m)
i in A, for 1 ≤ i ≤ r.

Let x ∈ A. If x ∈ P
(m)
i , then xn ∈ (P

(m)
i )n and (Qi

(m)
: xn) = A/(J + Im)

for any n ≥ λm. If x /∈ P
(m)
i , then xn /∈ (P

(m)
i )n and (Q

(m)

i : xn) = Q
(m)

i for any
n ≥ λm. Thus, for any n ≥ λm,

(
0A/(J+Im) : x

n
)
=

(⋂
i

Q
(m)

i : xn

)
=

⋂
i

(
Q

(m)

i : xn
)
=

⋂
i / x/∈Pi

Q
(m)

i .

Hence, by Remark 2 (1) of [4] and Theorem 2 of [4], we get the result. �

Using the extended Rees algebra of a to reduce to the principal case (as done in
[5]), we prove the following corollary:
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Corollary 2. Let A be a Noetherian ring and let I, J and a be ideals of A. Then
there exists λ ≥ 0 such that

(J + Im) ∩ a
n = ((J + Im) ∩ a

λm)an−λm.

Proof. Let B := A[at, t−1]. Then t−nB ∩ A = an. By Proposition 1, there exists
λ ≥ 1 such that for any n,m ∈ N, n ≥ λm,

(t−n) ∩ (J + Im) = ((t−λm) ∩ (J + Im))(t−(n−λm)).

We have

(J + Im)∩ a
n = ((t−m)∩ (J + Im)B)∩A =

(
((t−λm) ∩ (J + Im))(t−(n−λm))

)
∩A.

Thus (J + Im) ∩ an ⊂ ((J + Im) ∩ aλm)an−λm. The reverse inclusion is clear. �

Let (A,m) be a Noetherian local ring and I be an ideal of A. Let us denote
by G(A/I) the associated graded ring of A/I with respect to m. Then G(A/I) =
G(A)/I∗, where I∗ ⊂ G(A) is the graded ideal of G(A) generated by the elements
f∗ with f ∈ I, where f∗ is the leading form of f : if ord(f) := sup{k, f ∈ mk} = d,
then f∗ = f + md+1. Finally f1, ..., fp form a (minimal) standard basis of I if
f∗
1 , ..., f

∗
p form a (minimal) generating set of I∗. It is clear that (I∗)n is included in

(In)∗, but both ideals are not equal in general. For example, if I = (x2, y3 − xy) ⊂
k[[x, y]] where k is a field, then (In)∗ = ((xy, x2)n, {xiy4n−3i+1}0≤i≤n−1); hence
y4n+1 ∈ (In)∗\(I∗)n [2]. Nevertheless we have the following theorem whose proof
is inspired by the link made in [1] between the Artin-Rees lemma and the orders of
the elements of a standard basis, with respect to a monomial order, of an ideal in
the ring of formal power series over a field (see also [6]).

Theorem 3. Let I be an ideal of a Noetherian local ring (A,m). Then there exists
an integer λ ≥ 0 such that for any integer n ≥ 0 and any minimal standard basis
f1, ..., fpn

of In we have ord(fi) ≤ λn for 1 ≤ i ≤ pn.

Proof. The canonical morphism A −→ Â is injective and G(A/I) = G(Â/I). Thus
we may assume that A is complete. Then A is of the form B/J , where B is a
regular local ring and J is an ideal of B. Hence we may assume that A is a regular
local ring, I and J are ideals of A, and we need to prove that there exists λ ≥ 0
such that for any minimal standard basis f1, ..., fpn

of J + In we have ord(fi) ≤ λn
for 1 ≤ i ≤ pn.

Let us assume that I + J �= (0). Let n ∈ N
∗ and let f1, ..., fpn

∈ J + In

such that f∗
1 , ..., f

∗
pn

form a minimal generating set of (J + In)∗ (in particular,
(f1, ..., fpn

) = J + In). Let us denote by ri the integer ord(fi), 1 ≤ i ≤ pn, and
let us assume that r1 ≤ r2 ≤ · · · ≤ rpn

. Let λ ≥ 0 satisfy Corollary 2 with
a = m. Let q ≥ 0 such that ri ≤ λn for i ≤ q and ri > λn for i > q. It
is enough to show that q = pn. Let us assume that q < pn. If q = 0, then
fi ∈ (J + In) ∩ mri = ((J + In) ∩ mλn)mri−λn ⊂ (J + In)m, 1 ≤ i ≤ pn. Hence
(J + In) = m(J + In), and (J + In) = (0) by Nakayama, which is a contradiction.
Thus q ≥ 1. For i > q we have fi ∈ (J+In)∩mri = ((J+In)∩mλn)mri−λn. Thus,
for q + 1 ≤ i ≤ pn, fi =

∑
k εi,kgi,k with gi,k ∈ (J + In) ∩ mλn εi,k ∈ mri−λn for

q < i ≤ pn and any k. Hence fi =
∑

k εi,k

(∑
1≤l≤pn

ηi,k,lfl

)
with ηi,k,l ∈ mλn−rl

for any i, k, l (because f∗
1 , ..., f

∗
pn

generate (J+In)∗ and G(A) is an integral domain).
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Thus, for q < i ≤ pn,

fi = (1−
∑
k

εi,kηi,k,i)
−1

∑
k

εi,k

⎛⎝∑
l �=i

ηi,k,lfl

⎞⎠ .

Then fi ∈
∑

l �=i flm
ri−rl for q + 1 ≤ i ≤ pn. By Gaussian elimination we see that

fi ∈
∑
l<i

flm
ri−rl for q + 1 ≤ i ≤ pn.

This means that f∗
i ∈ (f∗

1 , ..., f
∗
i−1)G(A), which contradicts the fact that f∗

1 , ..., f
∗
pn

form a minimal generating set of (J + In)∗. �

Let Os := k[[x1, ..., xs]], where k is a field, or let Os := k{x1, ..., xs}, where k

is a valued field. We denote by m its maximal ideal. For all α ∈ N
s let us denote

|α| := α1 + · · ·+ αs. We define a total order on N
s in the following way: α > β if

(|α|, α1, ..., αs) >lex (|β|, β1, ..., βs) for all α, β ∈ N
s. This induces a total order on

the monomials of Os in the following way: xα > xβ if α > β for all α, β ∈ N
s. If

f =
∑

α∈Ns fαx
α ∈ Os, let us denote by in>(f) the element fαx

α such that α < β
for all β �= α such that fβ �= 0. If in>(f) = fαx

α, let us denote by exp(f) the
element α ∈ N

s. Let I be an ideal of Os; we say that (f1, ..., fp) is a (minimal)
standard basis of I with respect to this order if {exp(f1), ..., exp(fp)} is a (minimal)
set of generators of the semigroup {exp(g), g ∈ I} (in particular (f1, ..., fp) = I).
We denote αi := exp(fi) for all i. We may always assume that |α1| ≤ · · · ≤ |αp|. In
this case, for l ∈ N we define q(l) ∈ N by αq(l) ≤ l and αq(l)+1 > l, where q(l) = 0
if l < |α1| and q(l) = p if l ≥ |αp|. We have the following result:

Proposition 4 ([6]). Let I be and ideal of Os. Then, with the previous notation,

I ∩m
m+l = (I ∩m

l)mm for all m ≥ 0

if and only if r(l) ≥ 1 and fj ∈ m|αj |−|α1|f1 + · · · + m|αj |−|αr(l)|fr(l), for j =
r(l) + 1, ..., p.

Corollary 5. Let I be an ideal of Os. Then there exists a polynomial function in
n, denoted by P , such that for all integers n ≥ 0 and any minimal standard basis
f1, ..., fpn

of In with respect to in> we have ord(fi) ≤ P (n) for 1 ≤ i ≤ pn.

Proof. Let f1, ..., fpn
be a minimal standard basis of In with respect to in>. Let

αi := exp(fi), 1 ≤ i ≤ pn, and let us assume that α1 ≤ α2 ≤ · · · ≤ αpn
. The

sequence α1, ..., αpn
is uniquely determined by In. By applying Proposition 4

and Corollary 2, we see that there exists λ ≥ 0, not depending on n, such that
|α1| ≤ |α2| ≤ · · · ≤ |αr| ≤ λn < |αr+1| ≤ · · · ≤ |αpn

| and
fi ∈ m

|αi|−|α1|f1 + · · ·+m
|αi|−|αr |fr for r + 1 ≤ i ≤ pn.

In particular, (f∗
1 , ..., f

∗
r ) is a system of generators of (In)∗, and (f∗

1 , ..., f
∗
pn
) is

a Gröbner basis of the homogeneous ideal (In)∗ with respect to the graded lex-
icographic order. From [3], ord(f∗

i ) is bounded by a polynomial function in λn
depending only on I and s, for r + 1 ≤ i ≤ pn. This proves the corollary. �
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