ASYMPTOTIC BEHAVIOUR OF STANDARD BASES

GUILLAUME ROND

(Communicated by Bernd Ulrich)

ABSTRACT. We prove that the elements of any standard basis of I^n , where I is an ideal of a Noetherian local ring and n is a positive integer, have order bounded by a linear function in n. We deduce from this that the elements of any standard basis of I^n in the sense of Grauert-Hironaka, where I is an ideal of the ring of power series, have order bounded by a polynomial function in n.

The aim of this paper is to study the growth of the orders of the elements of a standard basis of I^n , where I is an ideal of a Noetherian local ring. Here we show that the maximal order of an element of a standard basis of I^n is bounded by a linear function in n. For this we prove a linear version of the strong Artin-Rees lemma for ideals in a Noetherian ring. The main result of this paper is Theorem 3.

First we prove the following proposition inspired by Corollary 3.3 of [4]:

Proposition 1. Let A be a Noetherian ring and let I and J be ideals of A. There exists an integer $\lambda \geq 0$ such that

$$\forall x \in A, \forall n, m \in \mathbb{N}, n > \lambda m, \quad (x^n) \cap (J + I^m) = ((x^{\lambda m}) \cap (J + I^m))(x^{n - \lambda m}).$$

Proof. Let B:=A/J. By Theorem 3.4 of [5], there exists λ such that for any $m\geq 1$, there exists an irredundant primary decomposition $I^m=Q_1^{(m)}\cap\cdots\cap Q_r^{(m)}$ such that if $P_i^{(m)}:=\sqrt{Q_i^{(m)}}$, then $(P_i^{(m)})^{\lambda m}\subset Q_i^{(m)}$ for $1\leq i\leq m$. We denote by $\overline{Q}_i^{(m)}$ the image of $Q_i^{(m)}$ in $A/(J+I^m)$ for $1\leq i\leq r$. We denote by $\mathfrak{P}_i^{(m)}$ the inverse image of $P_i^{(m)}$ in A, for $1\leq i\leq r$.

Let $x \in A$. If $x \in \mathfrak{P}_i^{(m)}$, then $x^n \in (\mathfrak{P}_i^{(m)})^n$ and $(\overline{Q_i}^{(m)}: x^n) = A/(J + I^m)$ for any $n \geq \lambda m$. If $x \notin \mathfrak{P}_i^{(m)}$, then $x^n \notin (\mathfrak{P}_i^{(m)})^n$ and $(\overline{Q_i}^{(m)}: x^n) = \overline{Q_i}^{(m)}$ for any $n \geq \lambda m$. Thus, for any $n \geq \lambda m$,

$$\left(0_{A/(J+I^m)}:x^n\right)=\left(\bigcap_i\overline{Q}_i^{(m)}:x^n\right)=\bigcap_i\left(\overline{Q}_i^{(m)}:x^n\right)=\bigcap_{i\ /\ x\notin P_i}\overline{Q}_i^{(m)}.$$

Hence, by Remark 2 (1) of [4] and Theorem 2 of [4], we get the result. \Box

Using the extended Rees algebra of \mathfrak{a} to reduce to the principal case (as done in [5]), we prove the following corollary:

Received by the editors January 21, 2009, and, in revised form, October 1, 2009. 2010 Mathematics Subject Classification. Primary 13H99, 13C99.

©2010 American Mathematical Society Reverts to public domain 28 years from publication **Corollary 2.** Let A be a Noetherian ring and let I, J and $\mathfrak a$ be ideals of A. Then there exists $\lambda > 0$ such that

$$(J+I^m)\cap \mathfrak{a}^n=((J+I^m)\cap \mathfrak{a}^{\lambda m})\mathfrak{a}^{n-\lambda m}.$$

Proof. Let $B := A[\mathfrak{a}t, t^{-1}]$. Then $t^{-n}B \cap A = \mathfrak{a}^n$. By Proposition 1, there exists $\lambda \geq 1$ such that for any $n, m \in \mathbb{N}$, $n \geq \lambda m$,

$$(t^{-n}) \cap (J + I^m) = ((t^{-\lambda m}) \cap (J + I^m))(t^{-(n-\lambda m)}).$$

We have

$$(J+I^m)\cap \mathfrak{a}^n=((t^{-m})\cap (J+I^m)B)\cap A=\left(((t^{-\lambda m})\cap (J+I^m))(t^{-(n-\lambda m)})\right)\cap A.$$

Thus
$$(J+I^m) \cap \mathfrak{a}^n \subset ((J+I^m) \cap \mathfrak{a}^{\lambda m})\mathfrak{a}^{n-\lambda m}$$
. The reverse inclusion is clear. \square

Let (A, \mathfrak{m}) be a Noetherian local ring and I be an ideal of A. Let us denote by G(A/I) the associated graded ring of A/I with respect to \mathfrak{m} . Then $G(A/I) = G(A)/I^*$, where $I^* \subset G(A)$ is the graded ideal of G(A) generated by the elements f^* with $f \in I$, where f^* is the leading form of f: if $\operatorname{ord}(f) := \sup\{k, f \in \mathfrak{m}^k\} = d$, then $f^* = f + \mathfrak{m}^{d+1}$. Finally $f_1, ..., f_p$ form a (minimal) standard basis of I if $f_1^*, ..., f_p^*$ form a (minimal) generating set of I^* . It is clear that $(I^*)^n$ is included in $(I^n)^*$, but both ideals are not equal in general. For example, if $I = (x^2, y^3 - xy) \subset \mathbb{k}[[x,y]]$ where \mathbb{k} is a field, then $(I^n)^* = ((xy,x^2)^n, \{x^iy^{4n-3i+1}\}_{0 \le i \le n-1})$; hence $y^{4n+1} \in (I^n)^* \setminus (I^*)^n$ [2]. Nevertheless we have the following theorem whose proof is inspired by the link made in [1] between the Artin-Rees lemma and the orders of the elements of a standard basis, with respect to a monomial order, of an ideal in the ring of formal power series over a field (see also [6]).

Theorem 3. Let I be an ideal of a Noetherian local ring (A, \mathfrak{m}) . Then there exists an integer $\lambda \geq 0$ such that for any integer $n \geq 0$ and any minimal standard basis $f_1, ..., f_{p_n}$ of I^n we have $ord(f_i) \leq \lambda n$ for $1 \leq i \leq p_n$.

Proof. The canonical morphism $A \longrightarrow \widehat{A}$ is injective and $G(A/I) = G(\widehat{A/I})$. Thus we may assume that A is complete. Then A is of the form B/J, where B is a regular local ring and J is an ideal of B. Hence we may assume that A is a regular local ring, I and J are ideals of A, and we need to prove that there exists $\lambda \geq 0$ such that for any minimal standard basis $f_1, ..., f_{p_n}$ of $J + I^n$ we have $\operatorname{ord}(f_i) \leq \lambda n$ for $1 \leq i \leq p_n$.

Let us assume that $I+J\neq (0)$. Let $n\in\mathbb{N}^*$ and let $f_1,...,f_{p_n}\in J+I^n$ such that $f_1^*,...,f_{p_n}^*$ form a minimal generating set of $(J+I^n)^*$ (in particular, $(f_1,...,f_{p_n})=J+I^n$). Let us denote by r_i the integer $\operatorname{ord}(f_i), 1\leq i\leq p_n$, and let us assume that $r_1\leq r_2\leq \cdots \leq r_{p_n}$. Let $\lambda\geq 0$ satisfy Corollary 2 with $\mathfrak{a}=\mathfrak{m}$. Let $q\geq 0$ such that $r_i\leq \lambda n$ for $i\leq q$ and $r_i>\lambda n$ for i>q. It is enough to show that $q=p_n$. Let us assume that $q< p_n$. If q=0, then $f_i\in (J+I^n)\cap\mathfrak{m}^{r_i}=((J+I^n)\cap\mathfrak{m}^{\lambda n})\mathfrak{m}^{r_i-\lambda n}\subset (J+I^n)\mathfrak{m}, 1\leq i\leq p_n$. Hence $(J+I^n)=\mathfrak{m}(J+I^n)$, and $(J+I^n)=(0)$ by Nakayama, which is a contradiction. Thus $q\geq 1$. For i>q we have $f_i\in (J+I^n)\cap\mathfrak{m}^{r_i}=((J+I^n)\cap\mathfrak{m}^{\lambda n})\mathfrak{m}^{r_i-\lambda n}$. Thus, for $q+1\leq i\leq p_n$, $f_i=\sum_k \varepsilon_{i,k}g_{i,k}$ with $g_{i,k}\in (J+I^n)\cap\mathfrak{m}^{\lambda n}$ $\varepsilon_{i,k}\in\mathfrak{m}^{r_i-\lambda n}$ for $q< i\leq p_n$ and any k. Hence $f_i=\sum_k \varepsilon_{i,k}g_{i,k}$ with $g_{i,k}\in (J+I^n)\cap\mathfrak{m}^{\lambda n}$ with $g_{i,k,l}\in\mathfrak{m}^{\lambda n-r_l}$ for any i,k,l (because $f_1^*,...,f_{p_n}^*$ generate $(J+I^n)^*$ and G(A) is an integral domain).

Thus, for $q < i \le p_n$,

$$f_i = (1 - \sum_k \varepsilon_{i,k} \eta_{i,k,i})^{-1} \sum_k \varepsilon_{i,k} \left(\sum_{l \neq i} \eta_{i,k,l} f_l \right).$$

Then $f_i \in \sum_{l \neq i} f_l \mathfrak{m}^{r_i - r_l}$ for $q + 1 \leq i \leq p_n$. By Gaussian elimination we see that

$$f_i \in \sum_{l < i} f_l \mathfrak{m}^{r_i - r_l} \text{ for } q + 1 \le i \le p_n.$$

This means that $f_i^* \in (f_1^*, ..., f_{i-1}^*)G(A)$, which contradicts the fact that $f_1^*, ..., f_{p_n}^*$ form a minimal generating set of $(J + I^n)^*$.

Let $\mathcal{O}_s := \mathbb{k}[[x_1,...,x_s]]$, where \mathbb{k} is a field, or let $\mathcal{O}_s := \mathbb{k}\{x_1,...,x_s\}$, where \mathbb{k} is a valued field. We denote by \mathfrak{m} its maximal ideal. For all $\alpha \in \mathbb{N}^s$ let us denote $|\alpha| := \alpha_1 + \cdots + \alpha_s$. We define a total order on \mathbb{N}^s in the following way: $\alpha > \beta$ if $(|\alpha|, \alpha_1, ..., \alpha_s) >_{lex} (|\beta|, \beta_1, ..., \beta_s)$ for all $\alpha, \beta \in \mathbb{N}^s$. This induces a total order on the monomials of \mathcal{O}_s in the following way: $x^{\alpha} > x^{\beta}$ if $\alpha > \beta$ for all $\alpha, \beta \in \mathbb{N}^s$. If $f = \sum_{\alpha \in \mathbb{N}^s} f_{\alpha} x^{\alpha} \in \mathcal{O}_s$, let us denote by $\inf_{s = 0} f_s = f_s x^{\alpha}$, let us denote by $\inf_{s = 0} f_s = f_s x^{\alpha}$, let us denote by $\inf_{s = 0} f_s = f_s x^{\alpha}$. Let $f_s = f_s x^{\alpha}$ be an ideal of $f_s = f_s x^{\alpha}$, let us denote by $f_s = f_s x^{\alpha}$ be an ideal of $f_s = f_s x^{\alpha}$, let us denote by $f_s = f_s x^{\alpha}$ be an ideal of $f_s = f_s x^{\alpha}$, let $f_s = f_s x^{\alpha}$ be an ideal of $f_s = f_s x^{\alpha}$, let $f_s = f_s x^{\alpha}$ be an ideal of $f_s = f_s x^{\alpha}$. Let $f_s = f_s x^{\alpha}$ be an ideal of $f_s = f_s x^{\alpha}$, let $f_s = f_s x^{\alpha}$ be a minimal set of generators of the semigroup $f_s = f_s x^{\alpha}$ be an ideal of $f_s = f_s x^{\alpha}$. We denote $f_s = f_s x^{\alpha}$ be an ideal of $f_s = f_s x^{\alpha}$ be an ideal of $f_s = f_s x^{\alpha}$. We may always assume that $f_s = f_s x^{\alpha}$. In this case, for $f_s = f_s x^{\alpha}$ by we define $f_s = f_s x^{\alpha}$ by $f_s = f_s x^{\alpha}$ by $f_s = f_s x^{\alpha}$. We have the following result:

Proposition 4 ([6]). Let I be and ideal of \mathcal{O}_s . Then, with the previous notation,

$$I \cap \mathfrak{m}^{m+l} = (I \cap \mathfrak{m}^l)\mathfrak{m}^m \text{ for all } m \ge 0$$

if and only if $r(l) \geq 1$ and $f_j \in \mathfrak{m}^{|\alpha_j|-|\alpha_1|} f_1 + \cdots + \mathfrak{m}^{|\alpha_j|-|\alpha_{r(l)}|} f_{r(l)}$, for j = r(l) + 1, ..., p.

Corollary 5. Let I be an ideal of \mathcal{O}_s . Then there exists a polynomial function in n, denoted by P, such that for all integers $n \geq 0$ and any minimal standard basis $f_1, ..., f_{p_n}$ of I^n with respect to in_p we have $ord(f_i) \leq P(n)$ for $1 \leq i \leq p_n$.

Proof. Let $f_1, ..., f_{p_n}$ be a minimal standard basis of I^n with respect to in_>. Let $\alpha_i := \exp(f_i), \ 1 \le i \le p_n$, and let us assume that $\alpha_1 \le \alpha_2 \le \cdots \le \alpha_{p_n}$. The sequence $\alpha_1, ..., \alpha_{p_n}$ is uniquely determined by I^n . By applying Proposition 4 and Corollary 2, we see that there exists $\lambda \ge 0$, not depending on n, such that $|\alpha_1| \le |\alpha_2| \le \cdots \le |\alpha_r| \le \lambda n < |\alpha_{r+1}| \le \cdots \le |\alpha_{p_n}|$ and

$$f_i \in \mathfrak{m}^{|\alpha_i|-|\alpha_1|} f_1 + \dots + \mathfrak{m}^{|\alpha_i|-|\alpha_r|} f_r \quad \text{ for } r+1 \le i \le p_n.$$

In particular, $(f_1^*,...,f_r^*)$ is a system of generators of $(I^n)^*$, and $(f_1^*,...,f_{p_n}^*)$ is a Gröbner basis of the homogeneous ideal $(I^n)^*$ with respect to the graded lexicographic order. From [3], $\operatorname{ord}(f_i^*)$ is bounded by a polynomial function in λn depending only on I and s, for $r+1 \leq i \leq p_n$. This proves the corollary. \square

ACKNOWLEDGMENT

The author would like to thank Irena Swanson for having taken the time to answer his many questions about the subject.

References

- E. Bierstone, P. Milman, The local geometry of analytic mappings, Universita di Pisa, ETS Editrice, Pisa, 1988. MR971251 (90j:32011)
- 2. S. D. Cutkosky, J. Herzog, H. Srinivasan, Finite Generation of Algebras Associated to Powers of Ideals, arXiv 0806.0566, preprint.
- H. Möller, F. Mora, Upper and lower bounds for the degree of Groebner bases, EUROSAM 84 (Cambridge, 1984), 172-183, Lecture Notes in Comput. Sci., 174, Springer, Berlin, 1984. MR779124 (86k:13008)
- F. Planas-Vilanova, The strong uniform Artin-Rees property in codimension one, J. Reine Angew. Math., 527 (2000), 185-201. MR1794022 (2001g:13051)
- I. Swanson, Powers of ideals. Primary decompositions, Artin-Rees lemma and regularity, Math. Ann., 307 (1997), 299-313. MR1428875 (97j:13005)
- T. Wang, A stratification given by Artin-Rees estimates, Can. J. Math., 44 (1) (1992), 194-205. MR1152675 (93e:13031)

Institut de Mathématiques de Luminy, Université Aix-Marseille 2, Campus de Luminy, case $907,\,13288$ Marseille cedex 9, France

 $E ext{-}mail\ address: rond@iml.univ-mrs.fr}$