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We contribute to the exceptional APN conjecture by showing 
that no polynomial of degree m = 2r(2�+1) where gcd(r, �) �
2, r � 2, � � 1 with a nonzero second leading coefficient can 
be APN over infinitely many extensions of the base field. More 
precisely, we prove that for n sufficiently large, all polynomials 
of F2n [x] of such a degree with a nonzero second leading 
coefficient have a differential uniformity equal to m − 2.
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1. Introduction

1.1. Statement of results

The notion of differential uniformity is introduced by Nyberg in [18] to measure the 
resistance of mappings between finite Abelian groups against differential cryptanalysis. 

This work is partially supported by the French Agence Nationale de la Recherche through the SWAP 
project under Contract ANR-21-CE39-0012.
* Corresponding author.

E-mail addresses: yves.aubry@univ-tln.fr (Y. Aubry), ali.issa@univ-tln.fr (A. Issa), 
fabien.herbaut@univ-cotedazur.fr (F. Herbaut).
https://doi.org/10.1016/j.jalgebra.2023.07.017
0021-8693/© 2023 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jalgebra.2023.07.017
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jalgebra
mailto:yves.aubry@univ-tln.fr
mailto:ali.issa@univ-tln.fr
mailto:fabien.herbaut@univ-cotedazur.fr
https://doi.org/10.1016/j.jalgebra.2023.07.017


JID:YJABR AID:19144 /FLA [m1L; v1.341] P.2 (1-16)
2 Y. Aubry et al. / Journal of Algebra ••• (••••) •••–•••
In the context of a finite field Fq one defines the differential uniformity of a polynomial 
f ∈ Fq[x] as the maximum number of solutions of the set of equations f(x +α) −f(x) = β

where α and β belong to Fq with α nonzero:

δFq
(f) := max

(α,β)∈F∗
q ×Fq

�{x ∈ Fq | f(x + α) − f(x) = β}.

Particular emphasis is being placed on the even characteristic case and this is the 
framework that we will consider here. The differential uniformity is then obviously even 
and its smallest value is 2. Polynomials f ∈ F2n [x] such that δF2n (f) = 2 are highly 
relevant in cryptography and are called APN polynomials (for Almost Perfect Nonlinear).

APN polynomials which are APN over infinitely many extensions of the base field 
have also attracted some attention and they are called exceptional APN. Dillon has 
conjectured in [12] that the only monomials among them have degrees 2k + 1 and 22k −
2k+1 (which are called Gold and Kasami-Welch exponents respectively). The conjecture 
has been resolved by Hernando and McGuire in [14].

Thereafter, the first author of the present paper together with McGuire and Rodier 
have conjectured in [3] that up to the CCZ equivalence (an equivalence relation intro-
duced by Carlet, Charpin and Zinoviev in [7] and discussed in [6]), these monomials are 
the only exceptional APN polynomials. This statement is now referred to as the Aubry-
McGuire-Rodier conjecture. In this direction, they have established that if the degree of 
a polynomial f is odd, but neither a Gold nor a Kasami-Welch exponent, then f is not 
an exceptional APN polynomial. From there some authors have focused on the study of 
polynomials of degree Gold or Kasami-Welch (see [9] for a survey by Delgado and [10,11]
for recent results by Delgado, Janwa and Agrinsoni).

Few is known about the even degree case. The first author, McGuire and Rodier have 
proved in [3] that if f is a polynomial of degree 2e with e odd and if f contains a term of 
odd degree, then f is not exceptional APN. Moreover, Bartoli and Schmidt have stated 
in Proposition 1.4 in [4] that if a polynomial of even degree m is exceptional APN, then 
m ≡ 0 (mod 4).

A case where f has degree 4e with e ≡ 3 (mod 4) and satisfies a specific condition has 
been studied by Rodier in [20]. Caullery has handled in [8] the case where f has degree 
4e with e > 3 such that ϕe is absolutely irreducible, where

ϕe(x, y, z) := xe + ye + ze + (x + y + z)e

(x + y)(x + z)(y + z) .

Results on the absolute irreducibility of the polynomials ϕe are for example compiled in 
[15]. As pointed out in the proof of Lemma 2.2 in [3], the polynomial ϕe is not absolutely 
irreducible when e is even, so the case of polynomials of degree m ≡ 0 (mod 8) is still 
open. Moreover, the polynomial ϕe is not absolutely irreducible if e is a Gold exponent, 
as shown by Janwa and Wilson in Theorem 4 in [16], so the case of degree 4e with e a 
Gold exponent is also still open.
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Rather, one can ask how large the differential uniformity can be. Unless f is an 
additive polynomial plus a constant, the maximal value that the differential uniformity 
of a polynomial f of degree m can reach is the degree of the derivative f(x + α) − f(x)
which is bounded by m − 1 if m is odd and by m − 2 otherwise. Consequently we will 
say that a polynomial has a maximal differential uniformity if this bound is reached.

A density result has first been established in this direction in [23] where Voloch has 
proved that most polynomials of degree m congruent to 0 or 3 modulo 4 achieve this 
maximal differential uniformity. One can also find a generalization to the second-order 
differential uniformity in [1].

Moreover, Voloch and the two first authors provide in Theorems 5.3 and 5.5 in [2]
explicit infinite families of odd integers m such that all polynomials of degree m (and 
not just most of them) have a maximal differential uniformity for n large enough.

The main purpose of this paper is to extend these results to infinitely many explicit 
even degrees.

Theorem. (Theorem 4.1) Let m = 2r(2� + 1) where gcd(r, �) � 2, r � 2 and � � 1. For 
n sufficiently large, all polynomials f =

∑m
k=0 am−kx

k ∈ F2n [x] of degree m such that 
a1 �= 0 have maximal differential uniformity, that is δF2n (f) = m − 2.

In particular, polynomials f =
∑m

k=0 am−kx
k ∈ F2[x] of such a degree and such that 

a1 �= 0 are not exceptional APN.

This gives contributions to the exceptional APN conjecture for the two open cases 
mentioned above. Indeed it almost solves the case of the degrees m = 4e where e is a 
Gold exponent and it is a first step for the degrees m ≡ 0 (mod 8).

Note that point (i) of Theorem 2 in [23] reveals that the condition a1 �= 0 in the 
previous theorem is necessary to get the maximality of δF2n (f).

It is worth stressing that the methods used until now to prove that polynomials are 
not exceptional APN have rested on algebraic geometric tools. The point was to apply 
Weil-type bounds for the number of rational points on varieties defined over finite fields. 
In contrast, our approach comes from algebraic number theory. The point here is to 
apply the Chebotarev density theorem for functions fields introduced in this context by 
Voloch in [23].

1.2. Context and method of proof

Before entering into details in the next section, we provide here comprehensive lines 
of our approach which involves the Chebotarev density theorem, monodromy groups and 
Morse polynomials. We first present the main notions in function fields theory which are 
involved in our work (one can refer to [21] for further details).

Let K be a function field in one variable over Fq, i.e. K/Fq(t) is a finite algebraic 
extension where t is a transcendental element over Fq. The algebraic closure of Fq in K
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is a finite extension of Fq, denoted by FK
q , and called the constant field of K. Suppose 

that L is a finite algebraic extension of K and consider E the algebraic closure of FK
q in 

L. We will denote by EK the compositum of the fields E and K. Recall that if L = EK
then we say that L is a constant field extension of K and if E = FK

q we say that L is a 
geometric extension of K.

Suppose now that the extension L/K is Galois. For every prime P of L unramified 
over K one can associate an automorphism (P, L/K) of Gal(L/K) called the Frobenius 
automorphism attached to P for the extension L/K. One can show that if P is a prime 
of K, unramified in L, then the set of automorphisms {(P, L/K) | P above P} fills out a 

conjugacy class 
(

L/K
P

)
in Gal(L/K) called the Artin symbol attached to P . Moreover, if 

g(x) is a polynomial in Fq[x], its arithmetic (respectively geometric) monodromy group 
is defined as the Galois group of the splitting field F of g(x) − t over Fq(t) (respectively 
over FF

q (t)). Hence the extension F/Fq(t) will be geometric if and only if these two 
monodromy groups are equal. We are now able to state the following explicit version of 
the Chebotarev density theorem for first degree primes given by Pollack in [19].

Theorem 1.1. (Chebotarev) Suppose that Ω is a finite Galois extension of Fq(t). Let C
be a conjugacy class of Gal(Ω/Fq(t)) every element of which restricts down to the qth 
power map on FΩ

q . Let V (C) be the number of first degree primes P of Fq(t) unramified 

in Ω such that the Artin symbol 
(

Ω/Fq(t)
P

)
equals C. Then

∣∣∣∣V (C) − �C
[Ω : FΩ

q (t)]q
∣∣∣∣ � 2 �C

[Ω : FΩ
q (t)]

(
gq1/2 + g + [Ω : FΩ

q (t)]
)

where g denotes the genus of Ω/FΩ
q .

It is worth noticing that P splits in the Galois extension if and only if its Artin symbol 
reduces to the identity automorphism. So, if one is interested in an estimation of the 
number of primes which totally split in a Galois extension of function fields, one will 
focus on geometric extensions.

In the whole paper we will consider a polynomial f of Fq[x] where q = 2n and we will 
denote by F2 an algebraic closure of F2. For any α ∈ F∗

q the derivative of f with respect 
to α will be denoted by Dαf(x) := f(x + α) + f(x).

We will see in Section 4 that the Chebotarev density theorem ensures that if the 
geometric and arithmetic monodromy groups of Dαf are equal then for n sufficiently 
large there exists β ∈ F2n such that the number of solutions of the equation Dαf(x) = β

is equal to the degree of Dαf .
Nevertheless, how can we compare the monodromy groups of Dαf? Denote by Ω the 

splitting field of the polynomial Dαf(x) − t over the field Fq(t). The method developed 
in [23] consists in introducing an intermediate field F between Ω and Fq(t), namely 
the splitting field of the polynomial Lαf(x) − t over the field Fq(t), where Lαf is the 
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unique polynomial such that Lαf (x(x + α)) = Dαf(x) (see Proposition 2.3 of [2] for 
the existence and the unicity of such a polynomial Lαf).

The cornerstone of the results obtained in [23] is that for almost all f of a given 
degree, the associated polynomial Lαf is Morse. Also, it is proven in [2] that for some 
specific degrees m, for any polynomial f of degree m there exists α such that Lαf is 
Morse. Recall that a polynomial g ∈ F2n [x] is said to be Morse (see the Appendix of 
Geyer in [17]) if the critical points of g are nondegenerate (i.e. the derivative g′ and the 
second Hasse-Schmidt derivative g[2] have no common roots), if the critical values of g
are distinct (different zeros of g′ give different values of g) and if the degree of g is prime 
to the characteristic.

The reason we are interested in Morse polynomials comes from the more general 
form of the Hilbert theorem given by Serre in Theorem 4.4.5 of [22] (and outlined in 
even characteristic in the Appendix of Geyer in [17]) which asserts that the geometric 
monodromy group of a Morse polynomial is the full symmetric group.

It remains to identify when the polynomial g := Lαf is Morse. First, the resultant 
between g′ and g[2] is a classical tool to recognize polynomials g with nondegenerate 
critical points. The main difficulty rests in studying polynomials with distinct critical 
values. To this end, we make use of the algebraic characterization of such polynomials 
obtained by Geyer in the same appendix. Last, the parity condition on the degree of g
explains the common hypothesis of the results of this paper: when f has an even degree, 
the polynomial Lαf will have odd degree as soon as the degree of f is divisible by 4 and 
its second leading coefficient is nonzero.

In order to explain how to get a geometric extension Ω/F , let us write Lαf =∑d
k=0 bd−kx

k. Proposition 4.6 in [2] states that if Lαf is Morse and if x2 + αx = b1/b0
has a solution in Fq then the extension Ω/F is geometric. As we know simple expressions 

F2n (t)

F

FF
2n (t)

Ω

FFΩ
2n

Geometric as soon as:

the extension below is geometric and when

(II) there exists x ∈ F2n s.t x2 + αx = b1
b0

Geometric as soon as Lαf is Morse i.e. when

(I.a) Lαf has nondegenerate critical points

(I.b) Lαf has different critical values

(I.c) Lαf has odd degree

G = Gal (F/F2n (t))

G

Γ = Gal (Ω/F )

Γ

Fig. 1. Galois extensions of function fields and their intermediate constant field extensions.
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of b1 and b0 in terms of the coefficients of f and α, Hilbert’s Theorem 90 enables us to 
translate the problem into a polynomial equation.

The diagram in Fig. 1 sums up the different conditions we intend to verify to prove 
that the extensions are geometric.

As explained in the figure, condition (I.c) will involve a congruence condition on the 
degree m of f , and the non-vanishing of the second leading coefficient of f . Conditions 
(I.a), (I.b) and (II) will translate into algebraic equations. For the specific degrees men-
tioned in the introduction, we will manage to bound the number of α for which at least 
one of the conditions fails.

2. Polynomials of degree multiple of 4

Before we focus in the rest of the paper on polynomials of degrees m = 2r(2� + 1)
with r � 2, we collect in this section some general results which hold for any degree m
congruent to 0 modulo 4.

2.1. A unique polynomial Lαf such that (Lαf)(x(x + α)) = Dαf(x)

The following proposition is a particular case of Proposition 2.1, Proposition 2.3 
and Lemma 2.5 in [2] whose proofs rest on linear algebra. We consider the polyno-
mial ring F2[a0, . . . , am, α] with indeterminates a0, . . . , am, α. This ring is endowed with 
the (weighted) degree w such that w(aj) = j and w(α) = 1. It means that the monomial 
ad0
0 ad1

1 . . . adm
m αdα has degree d1 + 2d2 + · · · + mdm + dα.

Proposition 2.1. Let m be an integer such that m ≡ 0 (mod 4) and f =
∑m

k=0 am−kx
k ∈

Fq[x] a polynomial of degree m. Consider α ∈ F∗
q . There exists a unique polynomial 

Lαf :=
∑d

k=0 bd−kx
k in Fq[x] of degree less or equal to d := (m − 2)/2 such that

(Lαf)(x(x + α)) = Dαf(x).

Moreover

(i) the application Lα is linear,
(ii) Lαf has degree d if and only if a1 �= 0,

(iii)

⎧⎪⎨
⎪⎩

b0 = a1α

b1 = a2α
2 + a3α if m ≡ 0 (mod 8) or

b1 = a0α
4 + a1α

3 + a2α
2 + a3α if m ≡ 4 (mod 8)

(iv) when seen as an element of F2[a0, . . . , am, α] the coefficient bi is an homogeneous 
polynomial of degree 2i + 2 when considering the weight w such that w(aj) = j and 
w(α) = 1.
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Remark 2.2. In order to fullfil condition (I.c) we want the polynomial Lαf to have odd 
degree. But d = (m − 2)/2 is odd when m ≡ 0 (mod 4), so a sufficient condition is to 
take a nonzero b0 i.e. a1 �= 0.

Remark 2.3. The point of view where Lαf is thought as an element of F2[a0, . . . , am, α]
will often be adopted in the following. The proof of the existence of a unique Lαf ∈
F2[a0, . . . , am, α] such that (Lαf)(x(x +α)) = Dαf(x) rests on the same arguments: the 
equation reduces to a unit triangular system.

2.2. The trace condition

Recall that condition (II) involves the existence of a solution of the equation x2+αx =
b1/b0 in F2n . By Hilbert’s Theorem 90 this is equivalent to say that Tr

(
b1

b0α2

)
= 0 where 

Tr stands for the trace from F2n to F2.

Proposition 2.4. Let f =
∑m

k=0 am−kx
k ∈ F2n [x] be a polynomial of degree m such that 

a1 �= 0.

(i) If m ≡ 0 (mod 8) then the number of α ∈ F∗
2n such that Tr

(
b1

b0α2

)
= 0 is 2n−1 − 1

if a2
2 + a1a3 �= 0 and 2n − 1 otherwise.

(ii) If m ≡ 4 (mod 8) then the number of α ∈ F∗
2n such that Tr

(
b1

b0α2

)
= 0 is equal 

to 2n−1 or 2n−1 − 1 if a2
2 + a1a3 = 0, and greater or equal to 1

2(2n − 2n/2+1 − 1)
otherwise.

Proof. The situation is simpler when m ≡ 0 (mod 8). We have by Proposition 2.1 that 
b1
b0

= a2α+a3
a1

so Tr
(

b1
b0α2

)
= Tr

(
a2
2+a1a3
a2
1α

2

)
. We notice that if a2

2 +a1a3 �= 0 then the map 

α �→ a2
2+a1a3
a2
1α

2 is a permutation of F∗
2n .

In the case where m ≡ 4 (mod 8), we find that Tr
(

b1
b0α2

)
= 0 if and only if 

Tr
(

a2
2+a1a3
a2
1α

2 + a0α
a1

)
= n. If a2

2 + a3a1 = 0 then there exist 2n−1 or 2n−1 − 1 nonzero 

elements α such that Tr
(

a0
a1
α
)

= n, depending on the parity of n. Otherwise, let 

us set C = a0/a1 and D2 = a2
2+a1a3
a2
1

, so we are reduced to study the equation 

Tr(Cα) + Tr(D/α) = n. Then if we set K2 = CD and v = a0α/a1K, we obtain 
Tr(Kv) + Tr(K/v) = n. Choosing S with Tr(S) = n we can rewrite the last condi-
tion as the existence of w such that Kv + K/v = S + w2 + w and multiplying through 
by v2 and setting y = vw turns the equation into K(v3 + v) + Sv2 = y2 + vy, which 
defines an elliptic curve E (as K �= 0) whose projective closure is smooth with one point 
at infinity. Let us set q = 2n. By the Hasse-Weil bound, the number of rational points 
over Fq on E is at least q− 2√q. Moreover, for any v in F∗

q there are at most 2 elements 
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(v, w) on E. Therefore, there are at least 1
2(q− 2√q− 1) suitable nonzero v and thus as 

many α which enables us to conclude the proof. �
2.3. Nondegenerate critical points

In this subsection we want to bound for a given polynomial f the number of α such 
that Lαf has degenerate critical points, that is those which do not satisfy condition (I.a).

Proposition 2.5. Let m be an integer such that m ≡ 0 (mod 4) and let f =∑m
k=0 am−kx

k ∈ F2n [x] be a polynomial of degree m such that a1 �= 0. The critical 
points of Lαf are nondegenerate except for at most (m − 1)(m − 4) values of α ∈ F2.

Proof. Recall that the second Hasse-Schmidt derivative (Dαf)[2] of the polynomial Dαf

is defined by

Dαf(t + u) ≡ Dαf(t) + (Dαf)′(t)u + (Dαf)[2](t)u2 (mod u3)

and that Lemma 3.3 of [2] states that the critical points of Lαf are nondegenerate if and 
only if (Dαf)′ and (Dαf)[2] have no common roots in F2.

We note h = f − a0x
m. The assumption on m implies that (xm)′ and (xm)[2] =(

m
2
)
xm−2 both vanish. Thus we use the linearity of Dα and of the derivative operators 

to get (Dαf)′ = (Dαh)′ and (Dαf)[2] = (Dαh)[2] and so the equality between the two 
resultants Res((Dαf)′, (Dαf)[2]) = Res((Dαh)′, (Dαh)[2]). As a1 �= 0, we are reduced to 
the case where the degree of h is congruent to 3 modulo 4. This case is treated in Lemma 
3.4 in [2] which states that Res((Dαh)′, (Dαh)[2]) is a polynomial of degree (m −1)(m −4)
in α with at most (m − 1)(m − 4) roots in F2. �
2.4. Distinct critical values

In this section we will bound the number of α ∈ F∗
2n such that the condition (I.b) is 

not satisfied. The aim of the two following statements is to study the case of Lα(xm−1)
when m ≡ 0 (mod 4).

Lemma 2.6. We consider an integer m � 8 such that m ≡ 0 (mod 4) and d = (m −2)/2. 
For all f =

∑m
k=0 am−kx

k ∈ F2n [x] of degree m such that a1 �= 0 the following conditions 
are equivalent:

(i) (Lαf)′ has d−1
2 distinct (double) roots in F2.

(ii) (Dαf)′ has d − 1 distinct (double) roots in F2.

Proof. Let us first assume that τ1, τ2, . . . , τ(d−1)/2 are d−1
2 distinct roots of (Lαf)′. We 

have that
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(Dαf)′ = (Lαf ◦ Tα)′ = α(Lαf)′ ◦ Tα (1)

where Tα(x) := x(x +α). So if we choose zi ∈ F2 such that Tα(zi) = Tα(zi +α) = τi the 
elements z1, z1 + α, z2, z2 + α, . . . , z d−1

2
, z d−1

2
+ α are d − 1 distinct roots of (Dαf)′.

Conversely, z is a root of (Dαf)′ = α(Lαf)′◦Tα if and only if z+α is. So d −1 distinct 
roots of (Dαf)′ can always be written as z1, z1 + α, z2, z2 + α, . . . , z d−1

2
, z d−1

2
+ α. Now 

set τi := Tα(zi) = Tα(zi + α) to get d−1
2 distinct roots of (Lαf)′. �

Lemma 2.7. We consider an integer m � 8 such that m ≡ 0 (mod 4) and the monomial 
f(x) = xm−1. For any α ∈ F∗

2n the polynomial (Lαf)′ has (d − 1)/2 distinct double roots 
in F2, namely the τ1, . . . , τ(d−1)/2 defined by

τi = α2

1 + θi
+ α2

1 + θ2
i

where θ1, . . . , θ(d−1)/2 are (d − 1)/2 different d-th roots of the unity in F2 \ {1} such that 
θiθj �= 1 for i �= j.

Proof. We fix α ∈ F∗
2n . By the previous lemma, it is sufficient to determine the roots of 

(Dαf)′, that is the solutions of the equation xm−2 + (x +α)m−2 = 0. As these solutions 
are obviously different from 0, it amounts to studying the solutions θ of 

(
x+α
x

)m/2−1 = 1. 
For θ = 1 there is no corresponding solution x, but for any other (m/2 −1)-th root of the 
unity θ there is one and only one solution x = α

1+θ . To conclude that (Lαf)′ has m/4 −1
(that is (d − 1)/2) distinct roots of the claimed form, we use the equality (1) and the 
fact that for x = α

1+θ and x′ = α
1+θ′ , we have Tα(x) = Tα(x′) if and only if θθ′ = 1. �

Following the Appendix of Geyer in [17] we associate to any polynomial g =∑d
k=0 bd−kx

k ∈ Fq[x] of degree d a nonzero rational function Π ∈ F2[b0, . . . , bd][1/b0]
whose zeros correspond exactly to the polynomials with non-distinct critical values (note 
that in [17] Π is actually a polynomial in F2[b0, . . . , bd] as the value of b0 is taken to be 
1). We will use the notation Πd to stress the dependance on the degree. Recall that Πd

is defined as follows in [17]

Πd(g) :=
∏
i�=j

(g(τi) − g(τj)) (2)

where the τi are the (double) roots of g′. In the following lemma, which is an adaptation of 
Lemma 3.8 in [2] to handle the case when m ≡ 0 (mod 4), we prove that for a well chosen 
value of N the rational function bN0 Πd (Lαf) becomes a polynomial in F2[a0, . . . , am, α]
with useful homogeneity properties.

Lemma 2.8. Let m � 8 be an integer such that m ≡ 0 (mod 4). We consider a degree m
polynomial f =

∑m
k=0 am−kx

k such that a1 �= 0 and the associated polynomial Lαf =
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∑d
k=0 bd−kx

k. If we set d = (m −2)/2 and e =
((d−1)/2

2
)

then bde0 Πd(Lαf) is a polynomial 
in F2[a0, . . . , am, α] each of whose terms contains a product of (d + 2)e terms ai. This 
polynomial is homogeneous of degree (6d + 4)e when considering the weight w such that 
w(α) = 1 and w(ai) = i.

Proof. Mutatis mutandis, the proof can be read off from Lemma 3.8 in [2]. �
3. Polynomials of degree 2r(2� + 1)

Our strategy is now to prove that bde0 Πd (Lαf) has a simple leading coefficient when 
seen as a polynomial in α and when f has degree 2r(2� + 1). First, the following propo-
sition gives an handy interpretation which involves the trace polynomials Pk defined 
by

Pk(x) := x + x2 + · · · + x2k−1

for any integer k � 1.

Proposition 3.1. Let r � 2 and � � 1. We set m = 2r(2�+1), d = m−2
2 and e =

((d−1)/2
2

)
. 

We consider a polynomial f(x) =
∑m

k=0 am−kx
k of degree m such that a1 �= 0 and the 

associated polynomial Lαf =
∑d

k=0 bd−kx
k as above.

Recall that we use the notation Πd(g) for the rational function defined in (2) which 
describes the locus of polynomials g with non-distinct critical values. Thus

(i) the indeterminate a0 appears in the polynomial bde0 Πd(Lαf) with a power at most 
2e.

(ii) When seen as an element of F2[a0, . . . , am][α] the polynomial bde0 Πd(Lαf) has degree 
at most (5d +4)e. Moreover, the only monomial of such a degree that can appear in 
bde0 Πd(Lαf) is a2e

0 ade1 α(5d+4)e.
(iii) When seen as an element of F2[a0, . . . , am][α] the polynomial bde0 Πd(Lαf) has degree 

exactly (5d +4)e if and only if for any choice of different roots τi and τj of L1(xm−1)′

we have P�(τi + τj) �= 0 where P� is the �-th trace polynomial.

Proof. We are first looking for the coefficient a0 in the polynomial

bde0 Πd(Lαf) = (a1α)de
∏
i<j

(
d∑

k=0

b2d−k(τ2k
i + τ2k

j )
)
. (3)

Our point of departure is that when m admits the special form m = 2r(2� + 1) then 
Lα(xm) has the following very simple expression

Lα(xm) = αm +
�−1∑

αm−2r+k+1
x2r+k

. (4)

k=0
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It can be proved easily by checking that the composition of the right hand side with 
x(x + α) is actually xm + (x + α)m.

Then the linearity of Lα yields that when f = a0x
m+· · · the indeterminate a0 appears 

in few coefficients bi of Lαf , namely in bd, bd−2r , bd−2r+1 , . . . , bd−2r+�−1 .
Actually bd does not contribute in the product (3) since the terms τ2k

i + τ2k
j simplify 

for k = 0 in the sum between parentheses. Also, the terms τi do not give rise to the 
indeterminate a0. Indeed, any monomial in the bi in (3) will be multiplied by a polynomial 
Q in the variables τ2

1 , . . . , τ
2
(d−1)/2 and this polynomial is invariant under the action of 

the symmetric group S(d−1)/2. But

(Lαf)′ (x) = b0x
d−1 + b2x

d−3 + · · · + bd−3x
2 + bd−1 = b0(x2 + τ2

1 ) · · · (x2 + τ2
(d−1)/2)

thus Q belongs to F2[ b2b0 , 
b4
b0
, . . . , bd−1

b0
]. Again, the indeterminate a0 does not appear in 

Q as d− 2r, d− 2r+1, . . . , d− 2r+�−1 are odd.
So to investigate where the largest power of a0 appears in (3) we are reduced to study

(a1α)de
∏
i<j

(
b2d−2r (τi + τj)2

r

+ b2d−2r+1(τi + τj)2
r+1

+ · · · + b2d−2r+l(τi + τj)2
r+�−1

)
. (5)

This largest power is bounded by 2
((d−1)/2

2
)

= 2e and point (i) is proven.
To prove point (ii), consider a monomial au0

0 au1
1 . . . aum

m αv arising in bde0 Πd(Lαf). 
Recall that by Lemma 2.8 we count 2e + de indeterminates ai and we have u1 + 2u2 +
· · · + mum + v = (6d + 4)e. As we have just proved that u0 � 2e, it implies that either 
u0 = 2e, u1 = de, u2 = u3 = · · · = 0 and v = (5d +4)e, or in any other case v < (5d +4)e.

To treat point (iii), let us now determine when the monomial a2e
0 ade1 α(5d+4)e does 

appear in bde0 Πd(Lαf). We use the expression of the coefficients bd−2r+k obtained above 
to transform (5) into

a2e
0

⎡
⎣ade1 αde

∏
i<j

(
�−1∑
k=0

(αm−2r+k+1
)2(τi + τj)2

r+k

)⎤
⎦ .

We know that the expression between brackets is a polynomial in F2[a0, . . . , am][α] with 
no term a0 and we wonder if the monomial ade1 α(5d+4)e does appear. To this end it is 
sufficient to evaluate it when α = 1, a1 = 1 and a2 = · · · = am = 0 that is to consider ∏
i<j

P 2r

� (τi + τj) where the τi are the (d − 1)/2 different roots of L1(xm−1)′ which are 

described in Lemma (2.7). It concludes the proof. �
The Proposition 3.4 will exploit this interpretation. To make its proof more readable 

we now provide several lemmas, the first of them being an easy arithmetic result.

Lemma 3.2. Let r � 2 and � � 1. We set m = 2r(2� + 1) and d = (m − 2)/2.
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(i) If gcd(r, �) = 1 then gcd(d, 22� − 1) = 1,
(ii) If gcd(r, �) = 2 then gcd(d, 22� − 1) = 3.

Proof. For example, start with the observation that if t divides 22� − 1 then one can 
write t = ab where a and b are divisors of 2� − 1 and 2� + 1. Thus work modulo a and b
and study the order of 2 in the multiplicative group (Z/bZ)×. �

We have compiled in the following lemma some basic computational results which will 
prove useful establishing Proposition 3.4.

Lemma 3.3. Fix two integers r � 2 and � � 1 and set m = 2r(2� + 1). We have

(i) L1(xm−1) = x2r−1 +
(
1 +

∑r+�−1
k=r x2k

)∑r−1
k=0 x

2k−1,
(ii) x2(L1(xm−1))′ = P 2

r (x) + P 2r

� (x)P 2
r−1(x).

(iii) If τi is a root of L1(xm−1)′ then Pr−1(τi) �= 0.
(iv) For any choice of different roots τi and τj of L1(xm−1)′ such that P�(τi + τj) = 0

we have Pr−1(τi + τj) �= 0 and

P�(τi)2
r−1

= Pr(τi)
Pr−1(τi)

= Pr(τi + τj)
Pr−1(τi + τj)

= Pr(τj)
Pr−1(τj)

= P�(τj)2
r−1

.

Proof. By definition of L1 it is sufficient for the first point to compute the composition 
of the right hand side of the equality with the polynomial x(x +1) and to find D1(xm−1), 
that is (x + 1)m−1 + xm−1.

Just differentiate the former equality and use the relation P 2
r−1(x) + x2r = P 2

r (x) to 
get the second point.

If Pr−1 vanishes at a root τi of L1(xm−1)′, point (ii) leads to Pr(τi) = 0. But the 
relation between Pr−1 and Pr above implies that τi = 0, a contradiction with Lemma 2.7.

Under the hypotheses of the last item, point (ii) applies to get P 2
r (τi) +

P 2r

� (τi)P 2
r−1(τi) = 0 and thus P�(τi)2

r−1 = Pr(τi)
Pr−1(τi) , one of the claimed results. 

Now adding the equalities (ii) for x = τi, τj and using P�(τi) = P�(τj) lead to 
P 2
r (τi+τj) +P 2r

l (τi)P 2
r−1(τi+τj) = 0. Again, if Pr−1(τi+τj) = 0 we obtain Pr(τi+τj) = 0

and thus τi = τj , which is impossible. We have just proven that Pr−1(τi + τj) is nonzero 
and so we can write P�(τi)2

r−1 = Pr(τi+τj)
Pr−1(τi+τj) . �

Proposition 3.4. We fix r � 2 and � � 1 and we set m = 2r(2� + 1). Recall that we 
denote by Pk the k-th trace polynomial. Thus gcd(r, �) � 2 if and only if for any choice 
of different roots τi and τj of L1(xm−1)′ we have P�(τi + τj) �= 0.

Proof. We set m = 2r(2� +1) with r � 2 and � � 1 such that gcd(r, �) � 2. Let τi and τj
be two different roots of L1(xm−1)′ such that P�(τi + τj) = 0. A classical property of the 
trace polynomials implies that τi+τj belongs to F2� and so does Pr(τi+τj)

Pr−1(τi+τj) . (Remember 
that by Lemma 3.3 Pr−1(τi + τj) is nonzero.)
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By point (iii) of Lemma 3.3 again, we know that P�(τi)2
r lies in F2� and thus P�(τi)

too. Now we use the expression τi = 1
1+θi

+ 1
1+θ2

i
given by Lemma 2.7, where θi is a d-th 

root of the unity in F2 \ {1}. Substituting into P�(τi + τ2�

i ) = 0 leads to a telescopic sum 
which simplifies into 1

1+θi
= 1

1+θ22�
i

and then gives θ22�−1
i = 1. Since θdi = 1 it follows 

that θgcd(22�−1,d)
i = 1.

If gcd(�, r) = 1 then Lemma 3.2 gives gcd(22� − 1, d) = 1, so θi = 1, a contradiction.
We now turn to the case gcd(�, r) = 2. This time Lemma 3.2 asserts gcd(22�−1, d) = 3. 

We deduce that θi ∈ F4 and so τi ∈ F4. As � is even, we deduce that τi ∈ F2� and 
in consequence, P�(τi) ∈ F2. One can show that P�(τi) �= 1, otherwise point (ii) of 
Lemma 3.3 would imply Pr−1(τi) = Pr(τi) and thus τi = 0, a contradiction with the 
expression of τi given by Lemma 2.7. So P�(τi) = 0.

Now point (iii) of Lemma 3.3 also implies that Pr(τi) = 0. But for any u ∈ F4 \ {0, 1}
and for any positive even integer k we have Pk(u) = 0 if and only if 4 divides k, as 
Pk(u) =

∑k/2−1
s=0 (u + u2)22s . We know that τi �= 0 and when starting the proof with 

two different roots τi and τj of L1(xm−1)′, we could have chosen τi �= 1. Consequently 4
divides � and r, a contradiction.

Conversely, suppose that a := gcd(r, �) � 3. Since a divides r and � then Pa divides Pr

and P� (just write Pab =
∑b−1

k=0 P
2ka

a ). As a � 3 and Pa is separable then there exist τi
and τj two different nonzero roots of Pa in F2. From point (ii) of Lemma 3.3 we deduce 
that τi and τj are roots of L1(xm−1)′. But by linearity we also have P�(τi + τj) = 0 and 
we are done. �

We can now bring together these different ingredients to bound the number of α such 
that Lαf does not have distinct critical values, that is such that condition (I.b) fails.

Theorem 3.5. Let r � 2 and � � 1. We set m = 2r(2� + 1), d = (m − 2)/2 and e =((d−1)/2
2

)
. If gcd(r, �) = 1 or 2 then for any positive integer n, for any choice of the 

coefficients ai in F2n such that a0 �= 0 and a1 �= 0, the number of α ∈ F
∗
2 such that the 

polynomial Lαf associated to f(x) =
∑m

k=0 am−kx
k has not distinct critical values is at 

most (5d + 4)e.

Proof. Fix r, � and then m as in the statement of the theorem. We know by Lemma 2.7
that L1(xm−1)′ has (d − 1)/2 distinct roots τ1, τ2, . . . in F2 and that by Proposition 3.4
if i �= j then P�(τi + τj) �= 0. Now for f(x) =

∑m
k=0 am−kx

k ∈ F2[a0, . . . , am][x] Propo-
sition 3.1 ensures that bde0 Πd(Lαf), seen as an element of F2[a0, . . . , am][α], has degree 
exactly (5d + 4)e and that its leading term is a2d

0 ade1 α(5d+4)e.
Last, if we consider n � 1 and coefficients ai in F2n with a0, a1 �= 0, it follows that 

bde0 Πd(Lαf) is a polynomial in F2n [α] of degree (5d + 4)e whose number of roots is 
bounded by its degree. �
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4. Proof of the main theorem

We are finally in a position to prove the main result of this paper.

Theorem 4.1. Let m = 2r(2� +1) where gcd(r, �) � 2 and r � 2, � � 1. For n sufficiently 
large, for all polynomials f =

∑m
k=0 am−kx

k ∈ F2n [x] of degree m such that a1 �= 0 the 
differential uniformity δF2n (f) is maximal that is δF2n (f) = m − 2.

In particular, polynomials f =
∑m

k=0 am−kx
k ∈ F2[x] of such a degree and such that 

a1 �= 0 are not exceptional APN.

Proof. Under the hypotheses of the theorem we set m = 2r(2� + 1) and d = (m − 2)/2. 
Recall that, in order to apply the Chebotarev density theorem, our goal is to obtain a 
geometric extension Ω/F2n(t) and that our strategy is to bound the number of α such 
that the different conditions sum up in Fig. 1 fail.

Consider an integer N1 such that n � N1 implies

1
2

(
2n − 2n/2+1 − 1

)
︸ ︷︷ ︸

Lower bound for the

number of α s. t.

condition (II) is satisfied

> (m− 1)(m− 4)︸ ︷︷ ︸
Upper bound for the

number of α s. t.

condition (I.a) fails

+ (5d + 4)
(

(d− 1)/2
2

)
︸ ︷︷ ︸

Upper bound for the

number of α s. t.

condition (I.b) fails

. (6)

Now fix an integer n � N1 and f =
∑m

k=0 am−kx
k ∈ F2n [x] of degree m such that 

a1 �= 0. By Proposition 2.1 the associated polynomial Lαf has odd degree d, so condition 
(I.c) is satisfied. Recall that we have proved in Proposition 2.4 that there are at least 
1
2
(
2n − 2n/2+1 − 1

)
values of α ∈ F2n such that condition (II) is satisfied. Moreover, by 

Propositions 2.5 and 3.1 we know that (m − 1)(m − 4) and (5d +4)
((d−1)/2

2
)

respectively 
bound the number of α such that conditions (I.a) and (I.b) fail. So one can choose 
α ∈ F∗

2n such that conditions (I.a), (I.b) and (II) are satisfied.
For such a choice of α the polynomial Lαf has nondegenerate critical points, distinct 

critical values, an odd degree, and so is Morse. Thus Proposition 4.2 in the Appendix of 
Geyer in [17] (which is a form in even characteristic of the Hilbert theorem) applies and 
gives G = G = Sd and consequently the extension F/F2n(t) is geometric that is with no 
constant field extension.

Furthermore, since there exists x ∈ F2n such that x2 +αx = b1/b0, Proposition 4.6 in 
[2] yields Γ = Γ = (Z/2Z)d−1 and the second extension Ω/F is also geometric.

Moreover the extension Ω/F2n(t) is separable since Lαf has odd degree and is obvi-
ously normal as a decomposition field, so we finally deduce that the extension Ω/F2n(t)
is a geometric Galois extension.

We are now in a position to apply the explicit Chebotarev density theorem (stated as 
Theorem 1.1 in this paper) to the geometric Galois extension Ω/F2n(t). We denote by 
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V the number of places of degree 1 of F2n(t) which totally split in Ω, by dΩ the degree 
of Ω over F2n(t) and by gΩ the genus of Ω. We thus obtain the following lower bound

V � 2n

dΩ
− 2

dΩ

(
gΩ2n/2 + gΩ + dΩ

)
. (7)

Since G = Sd and Γ = (Z/2Z)d−1 we have dΩ = d!2d−1. Furthermore gΩ � 1
2 (degDαf−

3)dΩ + 1 by Lemma 14 of [19] so gΩ � d!2d−1(d − 3/2) + 1. We deduce the existence of 
an integer N2 beyond which V � 1. Thus if n also satisfies n � N2 there exists β ∈ F2n

such that Dαf(x) = β has m − 2 distinct (simple) roots and δF2n (f) is maximal.
As a straightforward consequence we have shown that polynomials of degree m with 

coefficients in a finite extension of F2 with a nonzero second leading coefficient cannot 
be exceptional APN. �
Remark 4.2. Note that if a1 = 0, by Proposition 2.1 the degree of Dαf drops below m −2
and thus δF2n (f) < m − 2 for any integer n.

Remark 4.3. Let us make explicit the expression for n sufficiently large employed in 
Theorem 4.1. As a matter of example, consider the case of polynomials f = a0x

12 +
a1x

11 + . . . of degree m = 12 such that a1 �= 0. In this case Lαf has degree d = 5. 
Condition (6) leads to take N1 = 9 whereas Condition (7) yields N2 = 28. Thus, for n �
28 we have δF2n (f) = 10. As a corollary a polynomial of degree 12 with a nonzero second 
leading coefficient defined over a finite field of characteristic 2 cannot be exceptional 
APN.

Remark 4.4. It would be of interest to investigate other contexts where a similar ap-
proach could be fruitful. Within the scope of application one can suggest the study of 
multiplicative differential uniformities (see for instance [5] and [13]). The same method 
may also lead to results in the context of the odd characteristic.
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