Using multi-block analysis to select informative variables

Douglas N. Rutledge
Laboratoire de Chimie Analytique, AgroParisTech
16, rue Claude Bernard, 75005 Paris, France
rutledge@agroparistech.fr
Starting point

• Huge data sets
• Variable selection
• Multiple data sets
Variable Selection

The quality of multivariate predictive models is increased by eliminating uninformative variables.

For discriminant models, pp-ANOVA is often used:
- test each variable separately
- varies more between groups than within groups?

For regression analysis, many methods:
- Uninformative Variable Elimination-PLS [1]
- Genetic Algorithm-PLS [2]
- iPLS [3]...

pp-ANOVA and iPLS

The most commonly used methods:

• pp-ANOVA is intrinsically UNIVARIATE
• iPLS applies PLS regression to ISOLATED BLOCKS

• And then there is the *multiple-testing problem*!

SO - better to use an intrinsically MULTIVARIATE, MULTIBLOCK method
Multi-block analysis

"Common Components and Specific Weights Analysis" - CCSWA [4]

Simultaneously study several matrices
- with different variables describing the same samples

Describe \(m \) data tables observed for the same \(n \) samples:
- a set of \(m \) data matrices (\(X \)) each with \(n \) rows,
- but not necessarily the same number columns

Determine a common space for all \(m \) data table,
- each matrix has a specific contribution ("salience")
to the definition of each dimension of this common space

Multi-block analysis

Start with p matrices \mathbf{X}_i of size $n \times ki$ ($i = 1$ to p)

Each \mathbf{X}_i column-centered and scaled by dividing by matrix norm : \mathbf{X}_{si}

For each \mathbf{X}_{si}, an $n \times n$ scalar product matrix \mathbf{W}_i can be computed as :

$$\mathbf{W}_i = \mathbf{X}_{si} \cdot \mathbf{X}_{si}^T$$

\mathbf{W}_i reflect the dispersion of the samples in the space of that table

The common dimensions of all the tables are computed iteratively
At each iteration, a weighted sum of the $p \mathbf{W}_i$ matrices is computed, resulting in a global \mathbf{W}_G matrix
Multi-block analysis

For each successive Common Dimension, calculate a scores vector \(q \) (coordinates of the \(n \) samples along the common dimension)

\[
W_i = \sum_{j=1}^{j=n} \lambda_j^{(i)} q_j q_j^T
\]

\(\lambda_j^{(i)} \) is the specific weight ("salience") associated with the \(i^{th} \) table for the \(j^{th} \) Common Dimension generated by \(q_j \)

Differences in the values of the specific weights for a dimension:
- information present in some tables but not others

Subsequent components calculated after deflating the data tables
"ComDim" the implementation of CCSWA used here is part of the SAISIR toolbox
PLS-ComDim

1. $X \xrightarrow{\text{PLS}} T_X$
2. $Y \xrightarrow{\text{PLS}} T_Y$
3. $\lambda_X \cdot W_X + \lambda_Y \cdot W_Y$
4. $W_G = U_W \cdot S_W \cdot V_W$
5. $\lambda_X = q^T \cdot W_X \cdot q$
6. $\lambda_Y = q^T \cdot W_Y \cdot q$
7. $D_{n-1}^2 < \text{seuil}$
8. $\text{Aux} = I - q \cdot q^T$
 $X_s = \text{Aux} \cdot X_s$
 $Y_s = \text{Aux} \cdot Y_s$

$\text{Dif}_n^2 = (W_X - I_X \cdot q \cdot q^T) + (W_Y - I_Y \cdot q \cdot q^T)$
1) NIR on apples

Samples
• 2 Varieties:
 • Cox, Jonagold
• 2 Faces:
 • Red, Green
• 3 Maturity levels:
 • fresh, ripe, over-ripe
• 8 different apples

Spectra
• 94 x 200 points

Tables
• 50 blocks of 4 variables
• 6 Common Dimensions
NIR Spectra

Spectra

ComDim Saliences
Correlation between ComDim Scores and "Face"
Correlation between **PLS-ComDim Scores** and "Face"
i-PLS between NIR and "Face"

- Blocks = 50
- Mean centred
- Max LVs = 4
- CV = Full

- Scores on LV1 for Block 8
Correlation between ComDim Scores and "Maturity"
Correlation between PLS-ComDim Scores and "Maturity"
i-PLS between NIR and "Maturity"

- Blocks = 50
- Mean centred
- Max LVs = 4
- CV = Full

- Scores on LV1 for Block 10
Correlation between ComDim Scores and "Variety"
Correlation between PLS-ComDim Scores and "Variety"
i-PLS between NIR and "Variety"

- Blocks = 50
- Mean centred
- Max LVs = 4
- CV = Full

- Scores on LV1 for Block 33
Genomics data

Chromosome 1

...

Chromosome 22
Genomics data

Samples
- 940 healthy individuals:
- 7 regions:
- 53 ethnic groups:

Variables
- 644,138 Single Nucleotide Polymorphisms (SNPs) / 22 Chromosomes

Pretreatment
- PCT on each chromosome = 22x(940*940) ⇒ 22x(940*100)

Analysis
- ComDim on the set of 22 PCT blocks

Segmented PCT on *Obese* data sets

\[TX_1 = \text{inv}(TPCT^TTPCT) * TPCT^TX_1 \]
Combined PCs

Component $t_3 = X_3 u_3$

Component $t_2 = X_2 u_2$

Component $t_1 = X u_1$

SegPCT Component t_{PCT}
SegPCT-PCA versus PCA

PCA and SegPCT-PCA (SW=2048, 10 PCT-PCs) memory allocation profiles

SegPCT-PCA
21 Mbytes
1207 s (~20 min.)

PCA
230 Mbytes
14819 s (~250 min.)

With PCT: faster and requires less memory
With PCT: identical results
Multivariate Analysis of all SNPs

Saliences of chromosome blocks
PCT-ComDim

CC1 Scores

Africa
Mid-East
Europe
Oceania
America

CC1 Scores
PCT-ComDim

CC3 Scores

America

E_Asia

Oceania
PCT-ComDim

CC4 Scores

Oceania
Correlation between ComDim Scores and European populations
Saliences of chromosome blocks

PCT-ComDim
Good & Bad news

PCT-ComDim

With segmented PCT:

- analyse data sets of *any width*
- quickly
- using less memory

With multi-block analysis:

- detect groups of interesting variables ("salience")
- visualise relations among samples ("scores")
First African-European Conference on Chemometrics
Mining School of Rabat
Morocco, 20th to 24th of September 2010

www.afrodata.org