Detection of network motifs by local concentration

Etienne Birmélé

Laboratoire *Statistique et Génome*, Université d'Evry
Groupe SSB - ANR NeMo
Detection of network motifs by local concentration

Etienne Birmelé

1 Context

2 Local Statistics

3 A global statistic

4 Motif detection procedure

5 Application to Yeast

6 Conclusion
Network motifs

A *motif* is a small graph which is over-represented in a network: it’s a candidate to be studied for a potential biological meaning.

Example: the feed-forward loop

![Feed-forward loop diagram](image-url)
Network motif detection

All previous methods look for an overall over-representation:

- U. Alon’s group (since 2002): simulations for size 3 and 4, Z-score
- J. Berg and M. Lässig (2004): probabilistic motifs by an alignment heuristic
Leading ideas

- A small graph m may be over-represented because one of its subgraphs m' is over-represented. In that case, m' is the relevant motif.
- Motifs in regulatory networks are known to be concentrated on some places of the networks (Dobrin & al 04).
- $Z = f(X_1, \ldots, X_n)$ is highly concentrated around its mean when the X_i’s are independent and changing the value of one of them does affect Z by less than a constant.
Changing the definition of a motif

Consider a small graph m and a subgraph m' of m obtained by the deletion of a vertex in m.

m is a *motif* with respect to m' if there exist an occurrence of m' in the network which has a surprisingly high number of extensions to occurrences of m.

\[m \quad m' \]

\[\begin{array}{c}
\bullet \\
\bullet \\
\bullet \\
\bullet \\
\end{array} \quad \begin{array}{c}
\bullet \\
\bullet \\
\end{array} \]

\[m' \]

\[\begin{array}{c}
\bullet \\
\bullet \\
\bullet \\
\bullet \\
\end{array} \quad \begin{array}{c}
\bullet \\
\end{array} \]

development
Random graph model

We fix the number n of nodes and the underlying random graph model is defined by a $n \times n$ matrix C: the edge indicators $(X_{ij})_{1 \leq i,j \leq n}$ are independent Bernoulli variables and

$$P(X_{ij} = 1) = c_{ij}$$

In particular, our theory is valid for:

- Edge probability proportional to $d_i d_j$.
- Mixture models on graphs with fixed classes.
Random graph model

\[P(\text{NN}) = \frac{1}{2} \]
\[P(\text{RR}) = \frac{1}{4} \]
\[P(\text{NR}) = 0 \]
\[P(\text{RN}) = \frac{1}{16} \]
Detection of network motifs by local concentration

Etienne Birmélé

1 Context

2 Local Statistics

3 A global statistic

4 Motif detection procedure

5 Application to Yeast

6 Conclusion
Notations

Let m be a small graph on k vertices $(r_1, \ldots, r_{k-1}, s)$ and m' the subgraph obtained by deleting s. Let $U = (u_1, \ldots, u_{k-1})$ be an ordered set of $k - 1$ vertices. We define:

- $N_U(m)$ the number of occurrences of m which restriction to U is isomorphic to m';
- $Y_U(m') = \mathbb{I}_{G[U] \sim m'}$
- $\text{ext}_U^y(m', m) = 1 \iff \forall i, X_{u_i, v} = e_{r_i, s}$
- $\text{ext}_U^y = 1$ if adding the vertex v yields an occurrence of m.
- $\lambda_U = \mathbb{E}(\sum_{v \notin U} \text{ext}_U^y)$ the mean number of valid extensions.
Then

\[N_U(m) = Y_U(m') \sum_{v \not\in U} ext_U^v(m', m) \]

and \(Y_U \) and \(ext_U^v \) are independent.
For $U = (3, 2, 4)$, $Y_U(m') = 1$ and $N_U(m) = 3$.
Poisson approximation

\[\sum_{v \notin U} ext_U^v \] is a sum of independent Bernoulli r.v.’s and can therefore be approximated in total variation distance by a Poisson law of mean \(\lambda_U \):

\[\forall A \subset \mathbb{Z}^+, \]

\[|\mathbb{P}(N_U(m) \in A | Y_U(m')) - Po(\lambda_U)(A)| \leq \min(1, 1/\lambda_U) \sum p_v^2 \]

with \(p_v = \mathbb{P}(ext_U^v = 1) \).

In practice, \(p_v \)’s are small and that bound is quite sharp (between 1.8e−9 and 5.0e−3 for the different positions of the feed-forward loop in the Yeast regulatory network).
The upper bound approximation is even better for tail probabilities:
If $t = \frac{m - \lambda_U}{\lambda_U} > 1$,

$$\mathbb{P}(N_U(m) \geq m \mid Y_U(m')) \leq \frac{t}{t-1} Po(\lambda_U)([m, +\infty))$$

$$\leq \frac{t + 1}{t - 1} Po(\lambda_U)(m)$$

which implies

$$\mathbb{P}\left(\frac{N_U(m) - \lambda_U}{\lambda_U} > t\right) \leq \mathbb{P}(Y_U(m') = 1) \frac{t + 1}{\sqrt{2\pi}(t - 1)} e^{-((1+t) \ln(1+t))}$$
1e7 graphs were generated using three vertex classes of 100 vertices each and respective probabilities of connection .25 and .05 depending on whether the vertices belonged to the same class or not.

The pattern m is the feed-forward loop and the vertex deleted to obtain m' is Z.

$$X \rightarrow Y \rightarrow Z$$

The position U contains one vertex of class 1 and one vertex of class 2. The mean number of extensions is $\lambda_U = 2.725$
Detection of network motifs by local concentration

Etienne Birmelé

Context

Local Statistics

A global statistic

Motif detection procedure

Application to Yeast

Conclusion

Simulated exemple

Black: empirical p-values
Red: $Po(\lambda)$ p-values
Detection of network motifs by local concentration

Etienne Birmelé

Context
Local Statistics
A global statistic
Motif detection procedure
Application to Yeast
Conclusion

Zoom on large deviations
Refining the bounds for moderate deviations

Theorem

Let $\eta = \sum_v p_v^2$ and $\phi = \frac{\eta}{\chi_U} + \eta(1 + t)^2$.
If $\lambda_U + \sqrt{\lambda_U} \leq m \leq \lambda_U^2/\eta$,

$$1 - 15\phi \leq \frac{\mathbb{P}(N_U(m) \geq m)}{\text{Po}(\lambda)([m, +\infty))} \leq 1 + 15\phi$$

Example: ER model with $p = \frac{c}{n}$. For $1 \leq m \leq \sqrt{15\alpha n}$,

$$(1 - \alpha)c_m \leq \frac{\mathbb{P}(N_U(m) \geq m)}{\text{Po}(\lambda)([m, +\infty))} \leq 1 + \alpha$$

with $\lim_{m \to \infty} c_m = 1$.
Detection of network motifs by local concentration

Etienne Birmelé

1. Context

2. Local Statistics

3. A global statistic

4. Motif detection procedure

5. Application to Yeast

6. Conclusion
A nice function

\[h(X, Y) = \begin{cases}
0 & \text{if } X \leq Y \\
X \ln\left(\frac{X}{e^Y}\right) + Y & \text{else}
\end{cases} \]

At fixed \(Y \), \(h_Y : X \rightarrow h(X, Y) \) is increasing, asymptotically equivalent to \(X \ln(X) \).
A global statistic

The local inequality can be rewritten as:

\[\forall t > 0, \mathbb{P}(h(N_U(m), \lambda_U) > t) \leq \mathbb{P}(G[U] \sim m')e^{-t} \]

As

\[\mathbb{P}(\max_U(h(N_U(m), \lambda_U)) > t) \leq \sum_U \mathbb{P}(h(N_U(m), \lambda_U) > t), \]

Theorem

\[\mathbb{P}(\max_U(h(N_U(m), \lambda_U)) > t) \leq \text{aut}(m')\mathbb{E}N_U(m')e^{-t} \]
An user-friendly corollary

Corollary

\[\mathbb{P}(\exists U/N_U(m) > e^2 \lambda_U + t) \leq a_{\text{ut}}(m') E N_U(m') e^{-t} \]

That is:

The probability that there exist any occurrence of \(m' \) in the network which has a surprisingly high number of extensions to \(m \) decreases exponentially.
Detection of network motifs by local concentration

Etienne Birmelé

1 Context

2 Local Statistics

3 A global statistic

4 Motif detection procedure

5 Application to Yeast

6 Conclusion
Motif selection criterion

Fix a threshold α.
For every pattern m of size $\leq k$, every non-disconnecting vertex s of m, do the following steps:

First step Determine if m is over-represented with respect to $m \setminus \{s\}$.

Second step If the answer is positive, determine for every non-disconnecting t distinct from s if $m \setminus \{t\}$ is over-represented with respect to $m \setminus \{s, t\}$.
m is a motif with respect to $m \setminus \{s\}$ if the answer to the second question is negative for all t.
The feed-forward loop being over-represented with respect to \(Z \), the pattern is not a motif.
Detection of network motifs by local concentration

Etienne Birmelé

1. Context

2. Local Statistics

3. A global statistic

4. Motif detection procedure

5. Application to Yeast

6. Conclusion
Transcriptional regulatory network available at U. Alon’s lab webpage: 680 genes and 1078 interactions.

Bayesian estimation of the parameters for a mixture model for graphs gives 7 vertex classes, of respective sizes 11, 13, 29, 78, 87, 88 and 384.
Motifs of size 3, 4, 5
Detection of network motifs by local concentration

Etienne Birmelé

1. Context
2. Local Statistics
3. A global statistic
4. Motif detection procedure
5. Application to Yeast
6. Conclusion
Conclusion

- New definition of a *motif*: a motif is over-represented with respect to a submotif.
- Fast algorithm.
- The known relevant motifs in the *Yeast* regulation network are found.
Perspectives

- Lower bounds,
- Deeper biological applications,
- Network comparisons using the local score lists.