SEMI-LINEAR REPRESENTATIONS: SOME EXAMPLES

M. ROVINSKY

1. Introduction

Let F be a field, G a group acting on F by field automorphisms and $k = F^G$ be the subfield of invariants of this action.

By an F-semi-linear G-representation we mean an F-space V with a $(k$-linear) G-action such that $\sigma(a \cdot v) = \sigma(a) \cdot \sigma(v)$ for any $\sigma \in G$, $v \in V$ and $a \in F$. This is the same as a module over the algebra $F(G) := F \otimes \mathbb{Z}[G]$ with evident action of F and the diagonal action of G. If G acts on F faithfully, then $F(G)$ is a central k-algebra. Semi-linear G-representations finite-dimensional over F form an abelian tensor rigid k-linear category.

A typical example of a semi-linear G-representations over F is given by the space $\Omega^1_{F/k}$ of differential 1-forms on F over k. In a certain conjectural sense, this is the only (up to tensor algebra operations and extensions) ‘universal’ semi-linear representation. This is the main motivation of the present note.

However, this means neither that $\Omega^1_{F/k}$ is non-trivial for arbitrary extension F/k, cf. §3, nor that $\Omega^1_{F/k}$ is the only source of semi-linear G-representations, cf. §2.1.

The natural map $V^G \otimes_k F \rightarrow V$ is injective for any semi-linear F-representation V of G. Hilbert Theorem 90 states that this is an isomorphism if F is algebraic over k, G acts faithfully on F and the stabilizers of the elements of V are open in the Krull topology.

If F is not algebraic over k then, a priori, there exist non-trivial (i.e., non-isomorphic to direct sums of copies of F) smooth (i.e. with open stabilizers in a natural generalization of the Krull topology studied in [J], p.151, Exercise 5, [H-W-H], [Sh] Ch.6, §6.3, and [I] Ch.2, Part 1, Section 1) semi-linear representation of G.

For example, if $F = k(t)$, where $t \in F$ is transcendental over k, and $G \cong \mathbb{Z}$ is generated by the automorphism $\sigma : t \mapsto t + 1$ then the one-dimensional F-space with the action of σ given by multiplication by t on a fixed non-zero vector defines a non-trivial F-semi-linear G-representation (as otherwise there would exist an element $f = f(t) \in F^\times = k(t)^\times$ such that $\sigma f / f = t$, in other words, $f(t + 1) = tf(t)$, which is impossible).

If G is an algebraic k-group acting an a k-variety X with $k(X) = F$, a part of examples comes from the fibre over the generic point of the G-equivariant bundles on X.

The main results of this note are Corollary 4.2 and Proposition 5.1, where it is shown that if F is the function field of a projective space \mathbb{P} over a characteristic zero field k with sufficiently many roots of unity and G is either the group of projective transformations, or a certain bigger subgroup in the Cremona group, then any semi-linear G-representations of

Supported in part by CNRS and by RFBR grant 02-01-22005.
degree one is an integral F-tensor power of $\det_F \Omega^1_{F/k}$. This bigger subgroup has such an advantage that it has no non-trivial representations of finite degree if $\dim_F P \geq 2$ (cf. Proposition 5.2), so at least this source of unexpected semi-linear representations is excluded.

There is a decreasing γ-filtration on any λ-ring. In the case of the K_0-ring of the category of coherent sheaves on a variety X the graded pieces of the γ-filtration are canonically isomorphic to the Chow groups $CH^q(X) = H^q_{\text{Zar}}(X, K^M_q)$. In the case of the K_0-ring $K^0_0(F \langle G \rangle)$ of the category of semi-linear G-representations of finite degree one has, by definition, $gr^0_0K^0_0(F \langle G \rangle) \cong \mathbb{Z} = H^0(G, K^M_0(F))$ and, as the group $H^1(G, GL_n F)$ classifies the isomorphism classes of F-semi-linear G-representations of degree r, $gr^1_0K^0_0(F \langle G \rangle) = H^1(G, K^M_0(F))$.

The natural questions are: Whether there exists a theory of Chern classes of semi-linear G-representations with values in $\bigoplus_{q \geq 0} H^q(G, K^M_q(F))$ so that the above equalities could be generalized to $gr^j_0K^0_0(F \langle G \rangle) = H^j(G, K^M_j(F))$ for all $j \geq 0$? Such “Chern” classes can probably be defined, using a construction of $[G]$, for semi-linear G-representations with “sufficiently small” G-action. Would this imply that the Chern character $K^0_0(F \langle G \rangle) \otimes \mathbb{Q} \xrightarrow{\text{ch}} \bigoplus_{q \geq 0} H^q(G, K^M_q(F)) \otimes \mathbb{Q}$ is, as in Riemann–Roch Theorem, a ring isomorphism? Is there a generalization of Hilbert Theorem 90, like $H^q(G, K^M_q(F)) = 0$ if $q > \text{tr.deg}(F/k)$?

As I do not know the answers to the above questions, the classical construction involving the curvature is adapted in §2.3 to our context to get the Chern classes of semi-linear G-representations with values in $\bigoplus_{q \geq 0} H^q(G, \Omega^F_q)$, where Ω^F_q is the exterior F-algebra of the Kähler differentials on F.

2. The curvature

Fix an absolute connection $V \xrightarrow{\nabla} \Omega^1_F \otimes_F V$ in a semi-linear finite-dimensional F-representation V of G. Then $\sigma \rightarrow \sigma \nabla \sigma^{-1}$ is a 1-cocycle on G with values in $\Omega^1_F \otimes_F \text{End}_F(V)$. Its class in $H^1(G, \Omega^1_F \otimes_F \text{End}_F(V))$, the curvature, is obviously independent of the choice of the connection. G acts on $\Omega^1_F \otimes_F \text{End}_F(V)$ by $\sigma \rightarrow (\omega \rightarrow a_\sigma \omega a_\sigma^{-1})$, where ω is considered as a matrix in the same basis where a_σ has been defined.

For any subfield k' in F preserved by G one can also consider relative k'-connections $V \xrightarrow{\nabla} \Omega^1_{F/k'} \otimes_{F/k'} V$ on V and the corresponding k'-curvatures in $H^1(G, \Omega^1_{F/k'} \otimes_{F/k'} \text{End}_{F/k'}(V))$. The set of isomorphism classes of semi-linear F-representations of G of degree r is canonically identified with the set $H^1(G, GL_n F)$.

2.1. A source of flat semi-linear representations. To any subfield k' in F invariant under the G-action and to any finite-dimensional semi-linear k'-representation V_0 of G one associates the semi-linear F-representation $V_0 \otimes_{k'} F$ of G. On the level of isomorphism classes of semi-linear representations of G of degree r this operation coincides with the natural map

\begin{equation}
H^1(G, \text{GL}_n F) \rightarrow H^1(G, \text{GL}_r F).
\end{equation}
As the k'-connection trivial on V_0 commutes with the G-action, the k'-curvature of $V_0 \otimes_{k'} F$ vanishes.

The following lemma gives a sufficient condition for injectivity of the map (1).

Lemma 2.1. Let k' be a Galois extension of k in F. If the G-orbit of any element of $F - k'$ spans a k'-subspace in F of dimension $> r^2$ then the map (1) is injective.

Proof. Let (a_σ) and (a'_σ) be two 1-cocycles representing some classes in $H^1(G, \text{GL}_r k')$. Suppose they become the same in $H^1(G, \text{GL}_r F)$, i.e., there is an element $b \in \text{GL}_r F$ such that $a_\sigma = b^{-1} a'_\sigma b$ for all $\sigma \in G$. Equivalently, $b a_\sigma = a'_\sigma b$ for all $\sigma \in G$. If $b \not\in \text{GL}_r k'$, i.e., there are some $1 \leq s, t \leq r$ such that $b_{st} \not\in k'$, then there is $\sigma \in G$ such that $\sigma b_{st} \not\in \langle b_{ij} | 1 \leq i, j \leq r \rangle_{k'}$, which contradicts $b a_\sigma = a'_\sigma b$. This means that $b \in \text{GL}_r k'$, and thus, the classes of (a_σ) and (a'_σ) in $H^1(G, \text{GL}_r k')$ coincide. \qed

Remark. The tensor multiplication over F is a group law on the set \mathcal{L} of isomorphism classes of F-semi-linear representations of degree 1 admitting presentation of type $V_0 \otimes_{k'} F$ for k'-representations V_0 of G, where k' is the algebraic closure of k in F. One has

$$\mathcal{L} = \ker[H^1(G, F^\times) \longrightarrow H^1(G, F^\times / k^\times)] = \text{coker}[(F^\times / k^\times)^G \longrightarrow H^1(G, k^\times)].$$

The following is a series of examples of semi-linear representations of degree 1 with vanishing k-curvature, whose isomorphism classes are outside of \mathcal{L}.

Let G be a connected algebraic k-group acting on a smooth proper k-variety X, and $F = k(X)$ be the function field of X. The short exact sequence of G-modules

$$0 \longrightarrow F^\times / k^\times \longrightarrow \text{Div}_{\text{alg}}(X) \longrightarrow \text{Pic}^0(X) \longrightarrow 0$$

gives an exact sequence of cohomologies

$$0 \longrightarrow \text{Pic}^0(X)^G / \text{Div}_{\text{alg}}(X)^G \longrightarrow H^1(G, F^\times / k^\times) \longrightarrow H^1(G, \text{Div}_{\text{alg}}(X)).$$

Explicitly, $\delta D = (\sigma \mapsto \sigma(D) - D)$ for any $D \in \text{Div}_{\text{alg}}(X)$ with the image in $\text{Pic}^0(X)$ fixed by G, where we identify the elements of F^\times / k^\times with their divisors.

On the other hand, for any $D \in \text{Div}_{\text{alg}}(X)$ there exists a (unique modulo $\Gamma(X, \Omega^1_{X/k})$) closed 1-form η on X with no poles except for logarithmic ones in the support of D and with the residue D. Then, modulo $\Gamma(X, \Omega^1_{X/k})$, $d \log$ of the element $f_\sigma \in F^\times / k^\times$ with the divisor $\sigma(D) - D$ is exactly $\sigma \eta - \eta$.

Without any loss of generality, we may suppose that $k = \mathbb{C}$. Then for any 1-cycle $\gamma \in H_1(X(\mathbb{C}), \mathbb{Z})$ and any $\sigma \in G$ one has $\gamma = \sigma \gamma$, so the periods of $\sigma \eta - \eta$ are in $\mathbb{Z}(1)$. This implies that the periods of $d \log f_\sigma - (\sigma \eta - \eta)$ vanish, and thus, $d \log f_\sigma = \sigma \eta - \eta$. This means that the image of δ is contained in the kernel of $H^1(G, F^\times / k^\times) \longrightarrow H^1(G, \Omega^1_{F/k}).$

Now we let

- $k = \mathbb{C}$,
- $X = \mathbb{C}/\Lambda$ be an elliptic curve = one-dimensional complex compact torus for a \mathbb{Z}-lattice
 \[\Lambda = \langle 1, \omega \rangle_{\mathbb{Z}} \supset \mathbb{Z} \text{ in } \mathbb{C}, \]
 and
- $G = X(\mathbb{C})$ be the group of translations of X.
Then \(\text{Div}_{\text{alg}}(X)^G = 0 \) and \(G \) acts trivially on \(\text{Pic}^G(X) \), so

\[
\text{Pic}^G(X) \overset{\delta}{\twoheadrightarrow} \ker(H^1(G, F^\times/k^\times) \longrightarrow H^1(G, \Omega^1_{F/k})).
\]

We only have to check that \(\delta(\text{Pic}^G(X)) \) is contained in the image of \(H^1(G, F^\times) \longrightarrow H^1(G, F^\times/k^\times) \).

Let \(\vartheta_\Lambda(z) \) be a \(\mathbb{Z} \)-periodic theta-function with simple zeroes in \(\Lambda \) and \(\vartheta_\Lambda(z - \omega) = e^{\alpha z + \beta \vartheta}(z) \). For each \(\bar{a} \in X = \mathbb{C}/\Lambda \) fix some lifting \(a \in \mathbb{C} \).

For each pair \(A, B \in \mathbb{R} \), set \(b_{A+B,\omega} = e^{\alpha A + B} \). Then \(f_\sigma = b_{\sigma} \vartheta_\Lambda(z) \vartheta_\Lambda(z, \omega - \omega \bar{z}) \in F^\times \) depends only on the class \(\sigma \in \mathbb{C}/\Lambda = X = G \) of \(\sigma \in \mathbb{C} \), i.e., \(f_\sigma(a) := f_\sigma \) is well-defined. It is clear that \((f_\sigma) \) is a 1-cocycle on \(G \) with coefficients in \(F^\times \), and its projection to \(H^1(G, F^\times/k^\times) \) is \(\delta(\bar{a}) \).

Finally, the \(F \)-semi-linear representations defined by the cocycles \((f_\sigma(a)) \) are all distinct, and they are not of type \(V_0 \otimes_k F \) if \(\bar{a} \neq 0 \).

2.2. Another description of the curvature. Let \(V \) be a semi-linear finite-dimensional \(F \)-representation of \(G \). Denote by \(I \) is the kernel of the multiplication map:

\[
0 \longrightarrow I \longrightarrow F \otimes_k F \overset{x}{\longrightarrow} F \longrightarrow 0.
\]

The map \((F \otimes_k F)/I^2 \longrightarrow \Omega^1_{F/k}\) given by \(x \otimes y \mapsto -xy \) induces a canonical isomorphism \(I/I^2 \overset{\sim}{\longrightarrow} \Omega^1_{F/k} \), so there is a short exact sequence

\[
0 \longrightarrow \Omega^1_{F/k} \longrightarrow (F \otimes_k F)/I^2 \overset{x}{\longrightarrow} F \longrightarrow 0.
\]

There are two \(F \)-space structures on \((F \otimes_k F)/I^2\). However, they coincide in the restriction to \(I/I^2 \). Applying to (2) the (composition of two) exact functor(s) \(\text{Hom}_F(V, - \otimes_F V) \), we get an extension

\[
0 \longrightarrow \Omega^1_{F/k} \otimes_F \text{End}_F(V) \longrightarrow V^\vee \otimes_{F \otimes k} \big((F \otimes_k F)/I^2\big) \otimes_{k \otimes k} V \overset{x}{\longrightarrow} \text{End}_F(V) \longrightarrow 0,
\]

where \(V^\vee = \text{Hom}_F(V, F) \) is the dual.

Then the curvature of \(V \) corresponds to the extension

\[
0 \longrightarrow \Omega^1_{F/k} \otimes_F \text{End}_F(V) \longrightarrow x^{-1}(F) \longrightarrow F \longrightarrow 0
\]

in the category of \(F \)-semi-linear \(G \)-representations, where \(x^{-1}(F) \) is the preimage of the scalars in \(\text{End}_F(V) \) in \(V^\vee \otimes_{F \otimes k} \big((F \otimes_k F)/I^2\big) \otimes_{k \otimes k} V \).

2.3. Chern classes with values in \(\bigoplus_{q=0}^n H^q(G, \Omega^q_{F/k}) \). In the standard way, invariant polynomials on the spaces of matrices corresponding to the elementary symmetric functions, evaluated on the curvature give the Chern classes of semi-linear \(F \)-representations of \(G \) with values in the \(k \)-algebra \(\bigoplus_{q=0}^n H^q(G, \Omega^q_{F/k}) \).

3. Examples of extensions \(F/k \) with trivial \(\Omega^1_{F/k} \)

If \(F \) is algebraic over \(k \) then \(\Omega^1_{F/k} = 0 \), so we assume that this is not the case.
1. Let \mathcal{A} be an absolutely irreducible algebraic group scheme over k and $G_0 \subseteq \mathcal{A}(k)$ a subgroup Zariski dense in \mathcal{A}. Then $F^{G_0} = k$, where we set $F = k(\mathcal{A})$. On the other hand, the tangent bundle of \mathcal{A} is trivial, so $(\Omega^1_{F/k})^{G_0} \cong \text{Hom}_k(T_1\mathcal{A}, k)$, thus one has $(\Omega^1_{F/k})^{G_0} \otimes_k F \cong \Omega^1_{F/k}$, i.e., $\Omega^1_{F/k}$ is a trivial F-semi-linear G_0-representation.

Let $G_0 \subseteq G \subseteq \text{Aut}_k(\mathcal{A})$ be a subgroup containing G_0 as a normal subgroup. Assume that the G/G_0-action on $T_1\mathcal{A}$ is scalar, and an index u subgroup of G/G_0 acts trivially on $T_1\mathcal{A}$.

Then $\left(\Omega^1_{F/k}\right)^{G_0} \otimes_k F \cong \left(\Omega^1_{F/k}\right)^{G_0}$ for any $j \geq 0$, i.e., $\left(\Omega^1_{F/k}\right)^{G_0}$ is a trivial F-semi-linear G-representation for any $j \geq 0$.

2. Let $n \geq 2$, $F = k(x_1, \ldots, x_n)$ and $G \subseteq \text{GL}_n k$ acts by linear substitutions of x_1, \ldots, x_n so that $F^{G_0} = k$. Then $\Omega^1_{F/k} \cong F \otimes_k V_0$, where V_0 is the restriction of the standard k-representation of $\text{GL}_n k$ to G, so $\Omega^1_{F/k} \cong F \otimes_k \bigwedge^k V_0$. In particular, if $G = SL_n k$ then $\Omega^1_{F/k} \cong F$.

4. Semi-linear representations of PGL of degree one

Fix an n-dimensional projective k-space \mathbb{P} and some coordinates x_1, \ldots, x_n on \mathbb{P}.

Let $G = \text{Aut}(\mathbb{P}) \cong \text{PGL}_{n+1} k$ be the group of automorphisms of \mathbb{P} and $F = k(\mathbb{P})$ be the function field of \mathbb{P}.

Let $A = (A_{ij})_{1 \leq i, j \leq n+1} \in \text{PGL}_{n+1} k$ act on F by $x_j \mapsto \frac{A_{j1} x_1 + \cdots + A_{jn} x_n + A_{j,n+1}}{A_{n+1,1} x_1 + \cdots + A_{n+1,n} x_n + A_{n+1,n+1}}$.

The aim of this section is to show that in characteristic zero any F-semi-linear G-representations of degree one is a ‘rational F-tensor power’ of the space $\Omega^1_{F/k}$ of differential forms on F.

Proposition 4.1. For any characteristic zero field k the group $H^1(G, F^x/k^x)$ is infinite cyclic.

Proof. Let $\Lambda \cong \mathbb{Z}^n$ be the standard lattice in the subgroup $\mathbb{Z}^n \cong U_0 \subset G$ of upper triangular unipotent matrices with the only non-zero entries in the $(n+1)$-st column (except the diagonal). First, by induction on n, we check the vanishing of $H^1(\Lambda_{\mathbb{Q}}, F^x/k^x)$.

As the terms $E_2^{s,0} = H^s(\Lambda_{\mathbb{Q}}/\Lambda, H^0(\Lambda, F^x/k^x))$ of the Hochschild–Serre spectral sequence for the subgroup $\Lambda \subset \Lambda_{\mathbb{Q}}$ vanish, we get $H^1(\Lambda_{\mathbb{Q}}, F^x/k^x) = E_2^{0,1} = H^1(\Lambda, F^x/k^x).$ Let $\lambda_0 = (0, \ldots, 0, 1) \in \Lambda$ and $\Lambda' = \mathbb{Z}^{n-1} \times \{0\} \subset \Lambda$. For any 1-cocycle $(f_\lambda) \in H^1(\Lambda, F^x/k^x)$ and any $\mu \in \Lambda_{\mathbb{Q}}$ there is an element $g_\mu \in k(x_1, \ldots, x_n)^x$ such that $f_{\lambda_0}(x + \mu)/f_{\lambda_0}(x) = g_\mu(x + \lambda_0)/g_\mu(x)$. Multiplying f_λ with rational functions of type $h(x + \lambda)/h(x)$ (which does not change the cohomology class), we may suppose that there are no pairs of irreducible components of the support of the divisor of f_{λ_0} that differ by a translation by an integer multiple of λ_0.

Then, for any $\mu \neq 0$ sufficiently small there are no pairs of irreducible components of the support of the divisor of $f_{\lambda_0}(x + \mu)/f_{\lambda_0}(x)$ that differ by a translation by an integer multiple of λ_0, and therefore, $f_{\lambda_0}(x + \mu)/f_{\lambda_0}(x) = g_\mu(x + \lambda_0)/g_\mu(x)$ if and only if $f_{\lambda_0}(x + \mu)/f_{\lambda_0}(x)$ is constant, which means that $f_{\lambda_0}(x)$ is constant itself.

5
Then for any \(\lambda \in \Lambda \) the cocycle condition gives
\[
f_{\lambda+\lambda_0}(x) = f_{\lambda}(x) = f_{\lambda}(x + \lambda_0),
\]
and thus, \(f_{\lambda}(x) \in k(x_1, \ldots, x_{n-1})^\times / k^\times \). By the induction assumption, there is some \(g \in k(x_1, \ldots, x_{n-1})^\times / k^\times \) such that \(f_{\lambda}(x) = g(x + \lambda)/g(x) \) for all \(\lambda \in \Lambda \), and thus, \(f_{\lambda}(x) = g(x + \lambda)/g(x) \) for all \(\lambda \in \Lambda_Q \), i.e., \(H^1(\Lambda_Q, F^\times / k^\times) = 0 \).

For a normal subgroup \(A \triangleleft B \) and a \(B \)-module \(W \) such that \(H^0(A, W) = H^1(A, W) = 0 \) the Hochschild–Serre spectral sequence gives:
\[
E_2^{p, q} = H^p(B/A, H^q(A, W)) = 0 \quad \text{and} \quad E_2^{1, 1} = H^1(B/A, H^1(A, W)) = 0,
\]
so \(H^1(B, W) = 0 \).

Taking \(B = U_0 \supset A = \Lambda_Q \), and \(W = F^\times / k^\times \), we get
\[
H^1(U_0, F^\times / k^\times) = 0.
\]

Taking \(B = U \), the subgroup of upper triangular matrices in \(\text{PGL}_{n+1} k \), \(A = U_0 \) and \(W = F^\times / k^\times \), we get
\[
H^1(U, F^\times / k^\times) = 0.
\]

As the subgroup \(U_\triangleleft \) of lower triangular matrices in \(\text{PGL}_{n+1} k \) is conjugated to the subgroup \(U \) of upper triangular matrices in \(\text{PGL}_{n+1} k \), one has
\[
H^1(U_\triangleleft, F^\times / k^\times) = 0,
\]
any element of \(H^1(\text{PGL}_{n+1} k, F^\times / k^\times) \) can be presented by a cocycle of type \(U \rightarrow 1 \),
\[
(A_{ij})_{1 \leq i, j \leq n+1} \rightarrow f \left(\frac{A_{11} x_1}{x_1 + \cdots + A_{1,n+1} x_{n+1}}, \ldots, \frac{A_{n+1,1} x_1 + \cdots + A_{n+1,n+1} x_{n+1}}{x_1 + \cdots + A_{n+1,n+1} x_{n+1}} \right)
\]
for some \(f \in k(x_1, \ldots, x_{n})^\times / k^\times \), where \(A_{ij} = 0 \) if \(i < j \). The diagonal matrices are simultaneously lower and upper triangular, so \(f(x) = x^{m_1} \ldots x^{m_n} \) for some \(m_1, \ldots, m_n \in \mathbb{Z} \), which gives us that the above 1-cocycle on the lower triangular matrix
\[
(A_{ij})_{1 \leq i, j \leq n+1},
\]
where \(A_{ij} = 0 \) if \(i < j \), is \((A_{n+1,1} x_1 + \cdots + A_{n+1,n+1} x_{n+1})^{-m} \).

As the subgroups of lower and upper triangular matrices generate \(\text{PGL}_{n+1} k \),
\[
H^1(G, F^\times / k^\times) = \left\{ (A_{ij})_{1 \leq i, j \leq n+1} \rightarrow (A_{n+1,1} x_1 + \cdots + A_{n+1,n+1} x_{n+1})^{-m} \mid m \in \mathbb{Z} \right\} \cong \mathbb{Z}.
\]

Corollary 4.2. Let \(k \) be a field of characteristic zero. Then the natural homomorphism
\[
H^1(G, F^\times) \rightarrow H^1(G, F^\times / k^\times)
\]
is an injection of infinite cyclic groups.

Its cokernel is canonically isomorphic to the image of \(\mathbb{Z} \rightarrow \text{End}(k^\times) \otimes \mathbb{Z}/(n+1)\mathbb{Z} \).

The class \(^1\) of \(\Omega^1_{F/k} \) generates a subgroup of index \(n+1 \) in \(H^1(G, F^\times / k^\times) \).

In particular, the number of \((n+1)\)-st roots of unity in \(k \) divides the index of \(H^1(G, F^\times) \) in \(H^1(G, F^\times / k^\times) \) (thus, \(\Omega^1_{F/k} \) generates \(H^1(G, F^\times) \) if \(k \) contains all \((n+1)\)-st roots of unity).

Example. If \(k = \mathbb{R} \) then the index is 1 for even \(n \), and it is 2 for odd \(n \).

Proof. As \(G \) coincides with its commutant, \(\text{Hom}(G, k^\times) = 0 \), so the short exact sequence
\[
1 \rightarrow k^\times \rightarrow F^\times \rightarrow F^\times / k^\times \rightarrow 1
\]
gives an embedding \(H^1(G, F^\times) \hookrightarrow H^1(G, F^\times / k^\times) \). Suppose that the 1-cocycle
\[
A = (A_{ij})_{1 \leq i, j \leq n+1} \rightarrow (A_{n+1,1} x_1 + \cdots + A_{n+1,n+1} x_{n+1})^{-m}
\]
\(^1\) of the cocycle \((\sigma \mapsto \sigma \omega / \omega) \in H^1(G, F^\times) \) for any non-zero \(n \)-form \(\omega \in \Omega^n_{F/k} \).
on \(G \) with values in \(F^\times /k^\times \) can be lifted to a 1-cocycle \(A = (A_{ij})_{1 \leq i,j \leq n+1} \mapsto \Phi(A) \cdot (A_{n+1,i} x_1 + \cdots + A_{n+1,n} x_n + A_{n+1,n+1})^{-m} \) on \(G \) (considered as a 1-cocycle on \(GL(V) \) for an \((n + 1)\)-dimensional \(k \)-vector space \(V \)) with values in \(F^\times \). Then \(\Phi : GL(V) \mapsto k^\times \) is a homomorphism, and thus, \(\Phi \) factors through the determinant: \(\Phi(A) = \phi(\det A) \) for a homomorphism \(k^\times \mapsto k^\times \). The cocycle on \(GL(V) \) defined by \(\Phi \) descends to a cocycle on \(G \) if and only if \(\Phi \) is homogeneous of degree \(m \), so \(\phi(\lambda)^{n+1} = \lambda^m \). This implies that \(m \), considered as element of \(\text{End}(k^\times) \supset \mathbb{Z} \), should be divisible by \(n + 1 \).

As any endomorphism of \(k^\times \) induces an endomorphism of the subgroup of \((n + 1)\)-st roots of unity, if \(k \) contains \(t \) out of \(n + 1 \) roots of unity of order \(n + 1 \), then \(n + 1 \) divides \(m \) as element of \(\mathbb{Z} / t \mathbb{Z} \), which simply means that \(m \equiv 0 \pmod{t} \).

5. SEMI-LINEAR REPRESENTATIONS OF DEGREE ONE OF A SUBGROUP OF THE CREMONA GROUP

As in the previous section, we fix an \(n \)-dimensional projective \(k \)-space \(\mathbb{P} \) and some coordinates \(x_1, \ldots, x_n \) on \(\mathbb{P} \).

Let \(P = \text{Aut}(\mathbb{P}) \cong \text{PGL}_{n+1} k \) be the group of automorphisms of \(\mathbb{P} \) (denoted by \(G \) in §4), and \(F = k(\mathbb{P}) \) be the function field of \(\mathbb{P} \).

Let \(G \) be the subgroup of the Cremona group \(\text{Cr}_n(k) = \text{Aut}(F/k) \) generated by \(P \) and by the involution \(\sigma \) such that \(\sigma x_1 = x_1^{-1} \) and \(\sigma x_j = x_j \) for all \(2 \leq j \leq n \).

The aim of this section is to show that in characteristic zero any \(F \)-semi-linear \(G \)-representations of degree one is an integral \(F \)-tensor power of the space \(\Omega^1_{F/k} \) of differential forms on \(F \).

Proposition 5.1. Let \(k \) be a field of characteristic zero.

Then the isomorphism class of \(\Omega^1_{F/k} \) generates the group \(H^1(G, F^\times) \).

Proof. Let \((a_\tau) \) be a 1-cocycle on \(G \). We may suppose that (in notation of the proof of Corollary 4.2) the restriction of \((a_\tau) \) to \(P \) coincides with \(A \mapsto \phi(\det A) \cdot (A_{n+1,1} x_1 + \cdots + A_{n+1,n} x_n + A_{n+1,n+1})^{-m} \) for a homomorphism \(k^\times \mapsto k^\times \).

Let \(T \subseteq P \) be the maximal torus subgroup such that \(\tau x_j / x_j =: \lambda_j(\tau) \in k^\times \) for any \(\tau \in T \) and any \(1 \leq j \leq n \). Then \(\sigma \) normalizes \(T \) and for any \(\tau \in T \) one has \(\lambda_j(\sigma \tau \sigma^{-1}) = \lambda_j(\tau)^{1-2n,j} \), and \(a_\tau = \phi(\lambda_1(\tau) \cdots \lambda_n(\tau)) \). As \(a_{\sigma \tau \sigma^{-1}} = a_\sigma \cdot a_\tau \cdot \sigma \tau \cdot a_\sigma^{-1} \cdot a_\tau^{-1} \), this implies that \(\sigma \tau \sigma^{-1} a_\sigma \cdot a_\sigma^{-1} = \phi(\lambda_1(\tau)^2) \).

This means, in particular, that \(a_\tau \) does not depend on the variables \(x_2, \ldots, x_n \), i.e., \(a_\sigma \in k(x_1)^\times \), and \(a_\tau(\lambda_{1}^{-1}x_1) = \phi(\lambda_1^2) \cdot a_\sigma(x_1) \) for any \(\lambda_1 \in k^\times \).

It is now clear that \(a_\tau(x_1) \) is homogeneous, say of degree \(s \in \mathbb{Z} \), so \(\phi(\lambda_1^s) = \lambda^s \). Evaluating both sides at \(-1\), we see that \(s \) is even. Recall from the proof of Corollary 4.2 that \(\phi(\lambda)^{n+1} = \lambda^m \), so \(\lambda^{-s(n+1)} = \phi(\lambda^2)^{n+1} = \lambda^{2m} \), and thus, \(m = \frac{-s(n+1)}{2} \) is divisible by \(n + 1 \). Then \(a_\tau(x_1) = c \cdot x_1^{-2m/(n+1)} \) for some \(c \in k^\times \), so \((a_\tau) \) is the product on an integer power of the class of \(\Omega^1_{F/k} \) and a homomorphism \(G \mapsto k^\times \) trivial on \(P \).
Let ι_0 be the involution in P sending (x_1, \ldots, x_n) to $(1/x_1, x_2/x_1, \ldots, x_n/x_1)$, $s_1 = \iota_0 \sigma \iota_0 : (x_1, \ldots, x_n) \mapsto (1/x_1, x_2/x_1^2, \ldots, x_n/x_1^2)$ and $s_0 : (x_1, \ldots, x_n) \mapsto (x_1^{-1}, \ldots, x_n^{-1})$.

The element s_0 belongs to G, since it is the product of the elements $\iota_{ij} \sigma \iota_{ij}$ for all $1 \leq j \leq n$, where ι_{ij} are involutions in P such that $\iota_{ij} x_s = x_s$ for $s \notin \{i, j\}$ and $\iota_{ij} x_j = x_j$. Let g_0 be the element in P sending (x_1, \ldots, x_n) to $(\frac{x_1}{x_1^{-1}}, \frac{x_2}{x_1^{-1}}, \ldots, \frac{x_n}{x_1^{-1}})$. Then one has the following well-known identity in G: $s_1 = g_0 s_0 g_0$. Then for the homomorphism c as above one has $c(\sigma) = c(s_1) = c(g_0)^3 c(s_0)^2 = c(s_0)^2 = c(\sigma)^2$. As $\sigma^2 = 1$, this implies that $c(\sigma) = 1$. \qed

\textbf{Remark.} If k is algebraically closed and $n = 2$ then by M.Noether theorem $G = C_{2}(k)$.

\textbf{Proposition 5.2.} Let k be an algebraically closed field of characteristic zero, A a noetherian algebraic group scheme over a ring R and $n \geq 2$. Then $\text{Hom}(G, A(R)) = \{1\}$.

\textit{Proof.} It was shown at the end of the proof of Proposition 5.1 that there are no proper normal subgroups of G containing P. As P is simple (generated by any non-trivial conjugacy class), there are no proper normal subgroups of G containing a non-trivial element of P.

Let the elements of $C_{2}(k)$ act identically on $k(x_3, \ldots, x_n)$. This gives an embedding of $C_{2}(k)$ into $C_n(k)$. By M.Noether theorem, $C_{2}(k)$ is generated by σ and $P_2 := P \cap C_{2}(k)$.

Denote by $H \cong k(x_2) \ltimes k^\times$ the subgroup of $C_{2}(k) \subseteq G$ consisting of elements $\tau = (q(x_2), b)$ such that $\tau x_1 = x_1 + q(x_2)$ and $\tau x_2 = b \cdot x_2$ for some $q(x_2) \in k(x_2)$ and $b \in k^\times$.

Let $\rho : G \rightarrow A(R)$ be a homomorphism. We are going to show that $\ker \rho \cap H \cap P_2 \neq \{1\}$. As $\ker \rho$ is a normal subgroup in G, this will imply that $\ker \rho = G$.

For any $N \geq 3$ and any primitive N-th root of unity ζ_N^1 the centralizer of $(0, \zeta_N^1) \in H$ is $k(x_2^{N^1}) \ltimes k^\times$.

Suppose that $\ker \rho \cap H = \{1\}$. Then $H \cong A(R)$, and thus, the centralizer of $(0, \zeta_N^1)$ in H is the intersection of H with the centralizer of $(0, \zeta_N^1)$ in $A(R)$. The centralizer of an element of $A(R)$ is the group of R-points of a closed subgroup in $A(R)$, so any descending sequence of centralizers should stabilize. This is not the case for the sequence $(k(x_2^{N^1}) \ltimes k^\times)_N \geq 1$.

Let $(q_1(x_2), b) \in \ker \rho \cap H \neq \{1\}$. If $b \neq 1$ then

$$(x_2, 1)(q_1(x_2), b)(x_2, 1)^{-1} = (x_2 + q_1(x_2), b)(-x_2, 1)(-q_1(b^{-1}x_2), b^{-1}) = ((1-b)x_2 + q_1(x_2), b)(-q_1(b^{-1}x_2), b^{-1}) = ((1-b)x_2, 1) \in \ker \rho \cap H \neq \{1\},$$

so there is $(q(x_2), 1) \in \ker \rho \cap H \neq \{1\}$.

It easy to see using prime decomposition of q (or by M.Noether theorem) that $(x_1, x_2) \cong (q(x_2)x_1, x_2)$ is an element of $C_{2}(k) \subseteq G$, so $\alpha(q(x_2), 1) \alpha^{-1} \in \ker \rho \cap H$.

But $(x_1, x_2) \cong (x_1, x_2)$ is a non-trivial element of P_2, so $\ker \rho = G$. \qed

\textit{Acknowledgement.} This work was done at the Institut de Mathématiques de Luminy during the Semester ‘Arithmétique et Théorie de l’Information’ in spring 2003. I am grateful to its organizers Yves Aubry, Gilles Lachaud, Mikhail Tsfasman for the invitation and for very nice atmosphere during this semester.
REFERENCES

Current address:

Independent University of Moscow
121002 Moscow
B.Vlasievsky Per. 11
marat@mccme.ru

Institute for Information and Transmission Problems of Russian Academy of Sciences