Trisection for supersingular genus 2 curves in characteristic 2

Josep Miret1, Jordi Pujolàs1, and Nicolas Thériault2

1Departament de Matemàtica, Universitat de Lleida, España.
2Departamento de Matemática, Universidad del Bío-Bío, Chile.
Introduction

3-torsions

Trisections
- General case
- Special cases

Structure of $\text{Jac}(C)[3^\infty](\mathbb{F}_{2^m})$
- Structure of $\text{Jac}(C)[3](\mathbb{F}_{2^m})$
- Structure of $\text{Jac}(C)[3^k](\mathbb{F}_{2^m})$, $k > 1$
Let \mathbb{F}_q be a finite field of characteristic 2, then a super singular curve of genus 2 can be given by an equation of the form

$$y^2 + h_0 y = x^5 + f_3 x^3 + f_1 x + f_0$$

with $h_0 \neq 0$.

From a hyper elliptic curve, we can define the divisor class group: the quotient group of the divisors of degree zero modulo the principal divisors.

The reduced divisors in each class group can be given in Mumford representation,

$$D = [u(x), v(x)],$$

with u monic of degree at most 2, $\deg(v) < \deg(u)$, and satisfying $u|v^2 + h_0 v + f$.
Trisections

Given a reduced divisor $D_3 = [u_3(x), v_3(x)]$, we want to find all the possible reduced divisors $D_1 = [u_1(x), v_1(x)]$ such that

$$D_3 = 3D_1,$$

the trisections of D_3.

From the group structure, we know that

$$Jac(C)[3] \equiv (\mathbb{Z}/3\mathbb{Z})^4.$$

Over $\overline{\mathbb{F}}_q$, the problem consists in computing the 81 trisections of D_3.

Over \mathbb{F}_q, we have to identify which of the 81 trisections are defined over \mathbb{F}_q.
3-torsions

We are looking for the non-zero trisections of the divisor class 0 (Mumford representation: $[1, 0]$), i.e. divisors D such that $3D \equiv 0$.

We first observe that for curves of genus 2, D must have weight 2, so $D = [u(x), v(x)] = [x^2 + u_1x + u_0, v_1x + v_0]$.

Rather than solve $3D = 0$, we will solve $2D \equiv -D = [x^2 + u_1x + u_0, v_1x + (v_0 + h_0)]$.

To do this we look for an auxiliary polynomial $k(x)$ such that $\tilde{v}(x)$ in $2D = [u(x)^2, \tilde{v}(x)]$ is of the form $\tilde{v}(x) = v(x) + k(x)u(x)$.
3-torsions

The coefficients of x^0, x^1, x^2, and x^3 in

$$k_1^2 u(x)^2 = \frac{v^2(x) + h_0 v(x) + f(x)}{u(x)} + h_0 k(x) + k^2(x) u(x).$$

give us 4 equations in $\{u_1, u_0, v_1, v_0, k_1, k_0\}$, and the divisibility condition

$$v(x)^2 + h_0 v(x) + f(x) \equiv 0 \mod u(x)$$

gives us two more, completing the system.

In the system, u_1, u_0, and v_1 can be written in terms of k_1, k_0 and v_0.
3-torsions

k_1 satisfies the degree 5 equation

$$h_0 k_1^5 + f_3 k_1^4 + 1 = 0,$$

k_0 satisfies a degree 8 equation (depending on k_1)

$$k_1^4 k_0^8 + h_0^2 k_1^{10} k_0^4 + h_0^2 k_1^8 k_0^2 + h_0^3 k_1^{12} k_0 + f_1^2 k_1^{12} + f_3 h_0^2 k_1^{10} + h_0^2 k_1^6 = 0,$$

and v_0 satisfies a degree 2 equation (depending on k_1 and k_0)

$$k_1^2 v_0^2 + h_0 k_1^2 v_0 + k_1^2 f_0 + h_0 k_0^3 = 0.$$

Theorem

There is a bijection between triples of solutions $(k_1, k_0, v_0) \in \mathbb{F}_2^m \times \mathbb{F}_2^m \times \mathbb{F}_2^m$ satisfying the three equations above, and the set of divisors of order 3 in $\text{Jac}(C)(\mathbb{F}_2^m)$.
Factorization types

\(P_{u_1}(X) \) is the translate of a 2-linearized polynomial

\[\iff \text{The number of roots is } 0, 1, 2, 4, 8 \text{ in any field extension.} \]

Proposition

The possible **factorization types** of \(P_{u_1}(X) \):

- \([1, 1, 1, 1, 2, 2], [1, 1, 2, 4], [2, 2, 2, 2], [4, 4] \text{ if } m \text{ is odd.}\)
- \([1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 2, 2], [1, 1, 3, 3], [2, 2, 2, 2], [2, 6], [4, 4] \text{ if } m \text{ is even.}\)

Direct consequences:

Corollary

- **if 3-torsion subgroup of rank 4, then** \(m \text{ is even.} \)
- **if** \(P_{u_1}(X) \) **has 8 linear factors, then** \(m \text{ is even.} \)

In general, restricts the possible extension degrees where the 3-torsion divisors are defined.
Reducing $3D_1$ (Cantor)

Suppose that we obtain $3D_1 = [u_1^3(x), \tilde{v}(x)]$ using Cantor’s composition algorithm (D_1 is not of order 3), then the simple reduction of Cantor works as follows (assuming $\tilde{v}(x)$ has degree 5):

$$u_a(x) = \text{Monic} \left(\frac{\tilde{v}^2 + h\tilde{v} + f}{u_1^3} \right)$$

$$v_a(x) = \tilde{v} + h \mod u_a(x)$$

$$u_3(x) = \text{Monic} \left(\frac{v_a^2 + hv_a + f}{u_a} \right)$$

$$v_3(x) = v_a + h \mod u_3(x).$$

We refer to this as double linear reduction.

Special cases:

- D_1 of weight 1
- $3D_1 = [u_1^3(x), \tilde{v}(x)]$ with $\tilde{v}(x)$ of degree ≤ 4 (simple quadratic reduction)
- D_3 of weight 1 ($v_a(x)$ has degree ≤ 2).
De-reduction

Our goal is to go from $D_3 = [u_3, v_3]$ to $3D_1 = [u_3^3(x), \tilde{v}(x)]$, or rather to $D_1 = [u_1, v_1]$ with $v_1 = \tilde{v} \mod u_1$, undoing the reduction algorithm.

There should be 81 valid solutions over $\overline{\mathbb{F}}_q$, and either 0 or 3^r solutions over \mathbb{F}_q where r is the 3-rank of the curve over \mathbb{F}_q.

Writing $v_a(x)$ and $\tilde{v}(x)$ as

$$v_a(x) = v_3(x) + (k_1x + k_0)u_3(x) + h(x)$$
$$\tilde{v}(x) = v_a(x) + (k_3x + k_2)u_a(x) + h(x)$$

where $k_1 \cdot k_3 \neq 0$.

Then de-reducing comes down to finding $k_1x + k_0$ and $k_3x + k_2$ which connect $[u_3, v_3]$ and $[u_1, v_1]$ (via $[u_a, v_a]$).

This is similar to the de-reduction technique used for bisections in genus 2 curves, hence the name double linear de-reduction.
General case

Using the representations of $v_a(x)$ and $\tilde{v}(x)$ into the equations for the $u(x)$-terms, we obtain

$$u_a(x) = \frac{1}{k_1^2} \left(\frac{v_3^2 + v_3 h + f}{u_3} + (k_1 x + k_0)^2 u_3 + (k_1 x + k_0) h \right)$$

and then

$$u_1(x)^3 = \frac{1}{k_1^3} \left(k_1^2 u_3 + (k_3 x + k_2)^2 u_a + (k_3 x + k_2) h \right).$$

Expanding this last equality according to the degrees in x, we obtain 6 equations en u_{11}, u_{10}, k_0, k_1, k_2, and k_3.

To simplify the equations, we make the substitutions

$$t_1 = 1/k_1$$

$$t_3 = 1/k_3$$

$$z = t_3 k_2 = k_2/k_3$$
General case

From the coefficients of x^5 and x^4 we get:

$$u_{11} = u_{31} + t_1^2$$

$$u_{10} = u_{30} + u_{31}^2 + z^2 + k_0^2 t_1^2 + u_{31} t_1^2 + t_1^4$$

and then the coefficients of x^2 and x^3 can be combined to find k_0:

$$k_0 = \frac{1}{h_0 u_{31}^2 t_1^4} \left(t_1^{14} + u_{31} t_1^{12} + t_1^6 z^4 + u_{31}^2 t_1^6 z^2 + u_{31}^4 t_1^6 + f_3 u_{31} t_1^8
+ u_{31} t_1^4 z^4 + h_0 u_{31} t_1^7 + u_{31}^2 t_1^2 z^4 + u_{31}^4 t_1^2 z^2
+ u_{31} v_{31}^2 t_1^4 + u_{31}^3 u_{30} t_1^4 + f_3 u_{31} t_1^4 z^2 + u_{30}^2 t_1^6 + f_3 t_1^6
+ h_0 u_{31} t_1^3 z^2 + h_0 u_{31}^3 t_1^3 + u_{31} u_{30}^2 t_1^4 + f_3 u_{31} u_{30} t_1^4
+ u_{31} u_{30} t_1^2 + h_0 u_{31} u_{30} t_1^2 + h_0^2 t_1^4 + u_{31}^2 t_3^2 \right)$$

Remark

The case $u_{31} = 0$ must be handled separately and is easier than the case $u_{31} \neq 0$.
General case

The coefficients in x^2 and x^3 also leave us an equation

$$0 = t_1^{28} + u_{31}^2 t_1^{24} + t_1^{12} z^8 + u_{31}^4 t_1^{12} z^4 + u_{31}^8 t_1^{12} + f_3^2 u_{31}^2 t_1^{16} + u_{31}^2 t_1^8 z^8$$

$$+ h_0^2 u_{31}^2 t_1^{14} + h_0^2 u_{31}^3 t_1^{12} + u_{31}^4 t_1^4 z^8 + u_{31}^8 t_1^4 z^4 + u_{31}^4 v_{31}^4 t_1^8 + u_{31}^6 u_{30}^2 t_1^8$$

$$+ f_3^2 u_{31}^2 t_1^8 z^4 + h_0^2 u_{31}^4 t_1^{10} + u_{30}^4 t_1^{12} + f_3^4 t_1^{12} + h_0^2 u_{31}^3 t_1^8 z^2 + h_0^2 u_{31}^2 t_1^6 z^4$$

$$+ h_0^2 u_{31}^4 t_1^6 z^2 + u_{31}^2 u_{30}^4 t_1^8 + f_3^2 u_{31}^2 u_{30}^2 t_1^8 + h_0^2 u_{31}^3 u_{30}^8 t_1 + f_3^2 h_0^2 u_{31}^3 t_1^8$$

$$+ h_0^3 u_{31}^3 t_1^7 + u_{31}^4 u_{30}^4 t_1^4 + h_0^2 u_{31}^2 u_{30}^2 t_1^6 + h_0^4 t_1^8 + u_{31}^4 t_1^4$$

and substituting k_0 in the coefficients of x^0 and x^1 gives us two more equations in z, t_1 and t_3.

After some careful combinations, we can write t_3 in terms of t_1 and z, and obtain

$$p_1(t_1, z) = 0$$

$$p_2(t_1, z) = 0$$

with p_1 of degree 33 in t_1 and degree 12 in z, and p_2 of degree 15 in t_1 and degree 2 in z.
General case

Taking the resultant (in z) of p_1 and p_2 and cleaning out “parasitic” factors, we find

$$\text{Res}_z(p_1(t_1, z), p_2(t_1, z)) = t_1^9 \cdot (t_1^5 + (u_{31}^2 + f_3)t_1 + h_0)^{12} \cdot q_{D_3}(t_1)$$

where $q_{D_3}(t_1)$ is a polynomial of degree 81 (except in some special cases).

Proposition

Each non-zero root t_1 of $q_{D_3}(X) = 0$ corresponds to a trisection D_1 of D_3 via double linear de-reduction.
Weight-1 trisections

If \(D_1 = [x + u_{10}, v_{10}] \), the reduction of \(3D \) takes only one simple step. Setting \(\tilde{v}(x) = v_3(x) + k_0 u_3(x) + h(x) \), we obtain the equality

\[
(x + u_{10})^3 = \frac{v_3(x)^2 + v_3(x)h_0 + f(x)}{u_3(x)} + k_0^2 u_3(x) + k_0 h_0,
\]

which turns into 3 equations, first

\[
u_{10} = k_0^2 + u_{31},
\]

and then

\[
s_1(k_0) = k_0^4 + k_0^2 u_{31} + f_3 + u_{30}
\]
\[
s_2(k_0) = \left(u_{31}^2 + f_3\right) k_0^2 + h_0 k_0 + v_{31}^2 + u_{31} f_3
\]

Proposition

\(D_3 \) admits a trisection of weight 1 if and only if

\[
f_3^6 + f_3^4 u_{30}^2 + f_3^3 h_0^2 u_{31} + f_3^2 h_0^2 u_{31}^3 + f_3^2 h_0^2 u_{31} u_{30} + f_3^2 u_{31}^2 v_{31}^4 + f_3 h_0^4
\]
\[
+ f_3 h_0^2 u_{31}^5 + h_0^4 u_{30} + h_0^2 u_{31}^5 u_{30} + h_0^2 u_{31} v_{31}^4 + u_{31}^8 u_{30}^2 + u_{31}^6 v_{31}^4 + v_{31}^8 = 0
\]
Weight-1 trisectees

If $D_3 = [x + u_{31}, v_{31}]$ (D_3 has weight 1), the process is similar to the general case (double linear de-reduction), except that no special case can occur. (all trisections have weight 2 and all de-reductions are linear).

$$u_a = \frac{v_3^2 + v_3 h + f}{u_3} + (k_1 x + k_0)^2 u_3 + (k_1 x + k_0) h$$

$$(x^2 + u_{11} x + u_{10})^3 = \frac{u_3}{k_3^2} + \left(\frac{k_3 x + k_2}{k_3^2}\right)^2 u_a + \left(\frac{k_3 x + k_2}{k_3^2}\right) h$$

From which we get u_{11}, u_{10} and k_0 in terms of k_1 and $t_0 = \frac{k_2}{k_3}$:

$$u_{11} = k_1^2 + u_{30}$$
$$u_{10} = k_1^4 + k_1^2 u_{30} + f_3 + t_0^2$$
$$k_0^2 = k_1^6 + k_1^2 f_3 + k_1 h_0$$

with the final three equations in terms of k_1, t_0 and $t_1 = \frac{1}{k_3}$.

Since one equation does not depend on t_1, solving the can be reduced (via two resultants) to a degree 81 polynomial in k_1.
Simple quadratic de-reduction

In some cases, D_1 and D_3 both have weight 2, but \tilde{v} in $3D_1 = [u_1^3, \tilde{v}]$ is of degree ≤ 4. In this case, the reduction requires only one step, and we can write

$$\tilde{v}(x) = v_3(x) + (k_2x^2 + k_1x + k_0)u_3 + h(x)$$

Proposition

$D_3 = [x^2 + u_31x + u_30, v_31x + v_30]$ admits a simple quadratic de-reduction only if

$$u_{31}^5 + f_3^2u_{31} + h_0^2 = 0$$

and the associated D_1 has $u_{11} = u_{31}$.

working out the equations, we obtain a degree 9 trisection polynomial

$$p_{D_3}(t) = t^9 + u_{31}^4h_0^2t^3 + (u_{31}^{12} + u_{31}^6v_{31}^4 + u_{31}^8f_3^2 + u_{31}^5h_0^2u_{30})t + u_{31}^6h_0^3.$$

and $u_{10} = u_{30} + t^2/u_{31}$

Remark

If $u_{31}^5 + f_3^2u_{31} + h_0^2 = 0$, then the trisection polynomial for double linear de-reduction has degree 72 after removing 9 (false) roots $t_1 = 0$.
Goals

- A supersingular curves of genus 2 over any field \mathbb{F}_{2^m} with a 3-torsion subgroup of rank 3
- The exponents of $\text{Jac}(C)[3^\infty](\mathbb{F}_{2^m})$ are equal
- $\text{Jac}(C)[3^k](\mathbb{F}_{2^m})$ has a distinguished basis for every k

For curves with coefficients in \mathbb{F}_2, the first two results follow from C. Xing’s *On supersingular abelian varieties of dimension two over finite fields* (1996).
Structure of the group

Supersingular curves have simplified equation.

\[
D = \left[x^2 + u_1 x + u_0, v_1 x + v_0 \right], \quad D' = \left[x^2 + u_1 x + u'_0, v'_1 x + v'_0 \right]
\]

\[\Rightarrow u_1(\pm(D + D')) = u_1(\pm(D - D')) \]

by direct computation + supersingularity.

Proposition

If \(P_{u_1}(X) \) has more than 4 roots (type \([1, \ldots, 1]\)), then \(\text{rank}(\text{Jac}(C)[3]) \neq 3 \):

if 3-torsion has 3 generators \(D_1, D_2, D_3 \) with the same \(u_1 \), there must be 5 other divisors in \(\langle D_1, D_2, D_3 \rangle \) with same \(u_1 \), but they go together in pairs by property above!
There are no supersingular C in characteristic 2 such that $\text{Jac}(C)[3]$ has rank 3

- We can assume factorization type is not $[1, \ldots, 1]$
- for each u_1 obtain at most 4 u_0's, so need the 5 u_1's over \mathbb{F}_{2^m}.
- $40 - 13 = 27$ remaining pairs (u_1, u_0) to be found over extension of degree 2, 3, 6 because of factorization types.
- But we need $26/2 = 13$ first coordinates over \mathbb{F}_{2^m}. This leads to contradiction for every $m = 2, 3, 6$.
Distinguished Bases

Corollary (B)

There exists a basis of $\text{Jac}(C)[3]$ with elements having the same u_1.

- In rank 4, there must exist a root u_1 leading 8 u_0's. From the divisors with these first components $x^2 + u_1 x + u_0$ there exists a basis of $\text{Jac}(C)[3]$
- In rank 2, it follows from the factorization types of $P_{u_1}(x)$

Call such divisors “distinguished”
Quadratic De-reductions

Consider the situation:

- \(D = [x^2 + u_1 x + u_0, v_1 x + v_0] \) a divisor such that \(u_1 \) satisfies
 \[u_1^5 + f_3^2 u_1 + h_0^2 = 0 \]

- \(p_D(t) = t^9 + \ldots + u_{31}^6 h_0^3 \)
 the degree 9 quadratic-dereduction polynomial

- \(q_D(t_1) = (...) t_1^{72} + \ldots + h_0^{24} \)
 the degree 72 twice-linear-dereduction polynomial.

Proposition (D)

If \(q_D(t_1) \) has a root \(\alpha_1 \in \mathbb{F}_{2^m} \) then \(p_D(t) \) has a root \(\beta_1 \in \mathbb{F}_{2^m} \).

That is, if \(D \) has a trisection by twice-linear-dereduction \(D \) only if it has a trisection by quadratic-dereduction.
Theorem

The nonzero exponents of $\text{Jac}(C)(\mathbb{F}_2)[3^\infty]$ are equal.

Corollary

For every k, there is a distinguished basis of $\text{Jac}(C)[3^k](\mathbb{F}_2)$.

Sketch:

- By Corollary (B), we can take a distinguished basis in $\text{Jac}(C)[3]$.
- By Proposition (D), if a distinguished divisor has a trisection, it has a distinguished trisection (this is not trivial in rank 2).
- Prove by induction: For $D = [x^2 + u_{31}x + u_{30}, v_{31}x + v_{30}] \in \text{Jac}(C)[3^k](\mathbb{F}_2)$, D distinguished of order 3^k, $\Longrightarrow p_D(x)$ does not depend on undistinguished coefficients u_{30}, v_{31}, v_{30} but only on u_{31} and k.
Group Structure

- $k = 1$: in 3-torsion the only "wrong" coefficients satisfy
 \[h_0^2 u_{30} + v_{31}^4 u_{31} = f_3^2 u_{31}^3 + u_{31}^7 \]

- troubled coefficients in next level $p_{D'}(x)$ are
 \[h_0^2 u_{11} + u_{31} v_{11}^4 = h_0^2 u_{30} + u_{31} v_{31}^4 + \left(\frac{h_0^2}{u_{31}} t^2 + (u_{31} + 1)^4 t^4 + \frac{(f_3 + u_{31}^2)^4}{h_0^2} t^8 \right) \]

By induction hypothesis there exists a formula by which $h_0^2 u_{30} + u_{31} v_{31}^4$ depends only on u_{31}, and t (a root of $p_D(x) = p_{u_{31}}^k(x)$), then clearly $p_{D'}(x) = p_{u_{31}}^{k+1}(x)$ for any D'.

Hence $p_D(x)$ is the same for all distinguished D of order 3^k: $p_D(x) = p_{u_{31}}^k(x)$.
It only remains to show: if $\frac{1}{3} \tilde{D} \neq \emptyset$ for some undistinguished \tilde{D}, does there exist a distinguished D of the same order such that $\frac{1}{3} D \neq \emptyset$?

By induction, suppose there exists a distinguished $D \in \text{Jac}(C)[3^k](\mathbb{F}_2^m)$ such that $3^{k-1} D$ equals any distinguished basis elements in $\text{Jac}(C)[3](\mathbb{F}_2^m)$.

Let $\tilde{D} \in \text{Jac}(C)[3^k](\mathbb{F}_2^m)$ be undistinguished of order 3^k such that $\frac{1}{3} \tilde{D} \neq \emptyset$. By definition of k, $\text{Jac}(C)[3^k]$ must also contain a distinguished D such that $3^{k-1} \tilde{D} = 3^{k-1} D$.

\implies there exists an E of order 3^s with $s < k$ such that $D = \tilde{D} + E$. Therefore $\frac{1}{3} E \neq \emptyset$, hence $\frac{1}{3} D \neq \emptyset$ and our proof is complete.