Class group and unit group computation for large degree number fields

Jean-François Biasse

University of Calgary

October 2013
Presentation of the problem

Let K be a number field of degree n, \mathcal{O}_K its maximal order and $\mathcal{O} \subseteq \mathcal{O}_K$ an order in K.
Let K be a number field of degree n, \mathcal{O}_K its maximal order and $\mathcal{O} \subseteq \mathcal{O}_K$ an order in K.

We are interested in the following problems:

- Compute the class group $\text{Cl}(\mathcal{O})$ and the unit group $U(\mathcal{O})$ of \mathcal{O}.

Presentation of the problem

Let K be a number field of degree n, \mathcal{O}_K its maximal order and $\mathcal{O} \subseteq \mathcal{O}_K$ an order in K.

We are interested in the following problems:

- Compute the class group $\text{Cl}(\mathcal{O})$ and the unit group $U(\mathcal{O})$ of \mathcal{O}.
- Let $\alpha \subseteq \mathcal{O}$, find $\alpha \in \mathcal{O}$ such that $\alpha = (\alpha)$.

We mention applications of the resolution of these problems to number theory and cryptography.
Presentation of the problem

Let K be a number field of degree n, \mathcal{O}_K its maximal order and $\mathcal{O} \subseteq \mathcal{O}_K$ an order in K.

We are interested in the following problems:
- Compute the class group $\text{Cl}(\mathcal{O})$ and the unit group $U(\mathcal{O})$ of \mathcal{O}.
- Let $a \subseteq \mathcal{O}$, find $\alpha \in \mathcal{O}$ such that $a = (\alpha)$.
- Let $a \in \text{Cl}(\mathcal{O})$ and $B > 0$, find p_1, \ldots, p_k such that

$$a = p_1 \cdots p_k, \quad \text{with } N(p_i) \leq B$$
Presentation of the problem

Let K be a number field of degree n, \mathcal{O}_K its maximal order and $\mathcal{O} \subseteq \mathcal{O}_K$ an order in K.

We are interested in the following problems:

- Compute the class group $\text{Cl}(\mathcal{O})$ and the unit group $\text{U}(\mathcal{O})$ of \mathcal{O}.
- Let $\alpha \subseteq \mathcal{O}$, find $\alpha \in \mathcal{O}$ such that $\alpha = (\alpha)$.
- Let $\alpha \in \text{Cl}(\mathcal{O})$ and $B > 0$, find p_1, \ldots, p_k such that
 \[\alpha = p_1 \cdots p_k, \quad \text{with } \mathcal{N}(p_i) \leq B \]

We mention applications of the resolution of these problems to number theory and cryptography.
1 Motivation

2 Class group and unit group computation

3 Complexity aspects

4 Relations in the polarized class group
Computation of $\text{Cl}(\mathcal{O})$ and $U(\mathcal{O})$

Computing the unit group has applications to the resolution of some Diophantine equations.

The Pell equation

For $\Delta > 0$, solving

$$x^2 - \Delta y^2 = 1,$$

is equivalent to finding the unit group for $\mathbb{Q}(\sqrt{\Delta})$.

Computation of $\text{Cl}(\mathcal{O})$ and $U(\mathcal{O})$

Computing the unit group has applications to the resolution of some Diophantine equations.

The Pell equation

For $\Delta > 0$, solving

$$x^2 - \Delta y^2 = 1,$$

is equivalent to finding the unit group for $\mathbb{Q}(\sqrt{\Delta})$.

Connexion with other equations

Other Diophantine equations can be solved from solutions to the Pell equation

- Shäffer: $y^2 = 1^k + \cdots + x^k$.
- $y^2 = S_{x-a}^x$.

Where S denotes the Stirling number.
Principal ideal problem

Gentry’s original scheme (and some others) rely on the hardness of finding a small generator of a principal ideal.
Cryptanalysis of homomorphic schemes

Principal ideal problem

Gentry’s original scheme (and some others) rely on the hardness of finding a small generator of a principal ideal.

Alice sets up the schemes. Let $\mathbb{Z}[X]/(X^N + 1) = \mathbb{Z}[\theta]$.

- Alice draws small $\alpha \in \mathbb{Z}[X]/(X^N + 1)$ until $\mathcal{N}(\alpha) = p$ prime.
- Alice displays a \mathbb{Z}-basis of $p = (\alpha)$.
Cryptanalysis of homomorphic schemes

Principal ideal problem

Gentry’s original scheme (and some others) rely on the hardness of finding a small generator of a principal ideal.

Alice sets up the schemes. Let $\mathbb{Z}[X]/(X^N + 1) = \mathbb{Z}[\theta]$.

- Alice draws small $\alpha \in \mathbb{Z}[X]/(X^N + 1)$ until $\mathcal{N}(\alpha) = p$ prime.
- Alice displays a \mathbb{Z}-basis of $p = (\alpha)$.

Bob wants to encrypt $M \in \{0, 1\}$.

- Bob draws $R \in \mathbb{Z}[X]$ at random.
- Bob sends $M + 2R(\theta) \mod p$.

To decrypt, it suffices to know a small generator of p.

Biasse (U of C)

large degree fields

October 2013
Cryptanalysis of homomorphic schemes

Principal ideal problem

Gentry’s original scheme (and some others) rely on the hardness of finding a small generator of a principal ideal.

Alice sets up the schemes. Let $\mathbb{Z}[X]/(X^N + 1) = \mathbb{Z}[\theta]$.
- Alice draws small $\alpha \in \mathbb{Z}[X]/(X^N + 1)$ until $N(\alpha) = p$ prime.
- Alice displays a \mathbb{Z}-basis of $p = (\alpha)$.

Bob wants to encrypt $M \in \{0, 1\}$.
- Bob draws $R \in \mathbb{Z}[X]$ at random.
- Bob sends $M + 2R(\theta) \mod p$.

To decrypt, it suffices to know a small generator of p.
Group action on elliptic curves

- Let \mathcal{O} be a quadratic order, \mathbb{F}_q a finite field and a prime $l \nmid q$.
- Isomorphism classes are represented by j-invariants.

$\text{Ell}_{\mathcal{O}, t} := \{ \text{Isomorphism classes of } E(\mathbb{F}_q) \mid \text{End}(E) \simeq \mathcal{O} \text{ and } \text{trace}(E) = t \}$.
Let \mathcal{O} be a quadratic order, \mathbb{F}_q a finite field and a prime $l \nmid q$.

Isomorphism classes are represented by j-invariants.

$$\text{Ell}_{\mathcal{O}, t} := \{ \text{Isomorphism classes of } E(\mathbb{F}_q) \mid \text{End}(E) \cong \mathcal{O} \text{ and trace}(E) = t \}.$$

Group action of $\text{Cl} (\mathcal{O})$ on $\text{Ell}_{\mathcal{O}, t}$

- A split prime ideal \mathfrak{a} of norm l acts via an isogeny of degree l.
- If l is large, the action is hard to evaluate.
Group action on elliptic curves

- Let \mathcal{O} be a quadratic order, \mathbb{F}_q a finite field and a prime $l \nmid q$.
- Isomorphism classes are represented by j-invariants.

$$\text{Ell}_{\mathcal{O},t} := \{\text{Isomorphism classes of } E(\mathbb{F}_q) \mid \text{End}(E) \simeq \mathcal{O} \text{ and trace}(E) = t\}.$$

Group action of $\text{Cl} (\mathcal{O})$ on $\text{Ell}_{\mathcal{O},t}$

- A split prime ideal α of norm l acts via an isogeny of degree l.
- If l is large, the action is hard to evaluate.

If $\alpha \sim \prod p_i$ with small $\mathcal{N}(p_i)$, it boils down to evaluating that of the p_i.
- Transports the discrete logarithm problem to another curve.
- Allows endomorphism ring computation.
1 Motivation
2 Class group and unit group computation
3 Complexity aspects
4 Relations in the polarized class group
Input and output of the algorithm

Input
- A number field K.
- Its r_1 real embeddings, its r_2 pairs of complex embeddings.
- Its ring of integers $\mathcal{O}_K = \sum_i \mathbb{Z} \alpha_i$.

Output
- $\text{Cl}(\mathcal{O}_K) = \mathbb{Z}/d_1\mathbb{Z} \times \cdots \times \mathbb{Z}/d_k\mathbb{Z}$.
- $U = \mu \times \langle \gamma_1 \rangle \times \cdots \times \langle \gamma_r \rangle$

where $r := r_1 + r_2 - 1$ and μ is the set of roots of unity.
Input and output of the algorithm

Input
- A number field K.
- Its r_1 real embeddings, its r_2 pairs of complex embeddings.
- Its ring of integers $\mathcal{O}_K = \sum_i \mathbb{Z}\alpha_i$.

Output
- $\text{Cl}(\mathcal{O}_K) = \mathbb{Z}/d_1\mathbb{Z} \times \cdots \times \mathbb{Z}/d_k\mathbb{Z}$.
- $U = \mu \times \langle \gamma_1 \rangle \times \cdots \times \langle \gamma_r \rangle$

where $r := r_1 + r_2 - 1$ and μ is the set of roots of unity.

The γ_i are given in compact representation.
Class group computation

Factor base

Let \(\mathcal{B} = \{p_1, \ldots, p_N\} \) be a set of ideals whose classes generate \(\text{Cl}(\mathcal{O}_K) \).

We consider the surjective morphism

\[
\begin{align*}
\mathbb{Z}^N & \xrightarrow{\varphi} \mathcal{I} \xrightarrow{\pi} \text{Cl}(\mathcal{O}_K) \\
(e_1, \ldots, e_N) & \mapsto \prod_i p_i^{e_i} \mapsto \prod_i [p_i]^{e_i}
\end{align*}
\]
Class group computation

Factor base

Let $\mathcal{B} = \{p_1, \cdots, p_N\}$ be a set of ideals whose classes generate $\text{Cl}(\mathcal{O}_K)$.

We consider the surjective morphism

\[
\mathbb{Z}^N \xrightarrow{\varphi} \mathcal{I} \xrightarrow{\pi} \text{Cl}(\mathcal{O}_K)
\]

\[
(e_1, \ldots, e_N) \quad \xrightarrow{\quad \quad \quad \quad } \quad \prod_i p_i^{e_i} \quad \rightarrow \quad \prod_i [p_i]^{e_i}
\]

Property

The class group satisfies $\text{Cl}(\mathcal{O}_K) \simeq \mathbb{Z}^N / \ker(\pi \circ \varphi)$.

We deduce $\text{Cl}(\mathcal{O}_K)$ from the lattice of all the (e_1, \cdots, e_N) such that

\[
p_1^{e_1} \cdots p_N^{e_N} = (\alpha) = 1 \in \text{Cl}(\mathcal{O}_K) \text{ for some } \alpha \in \mathcal{O}_K.
\]
From relations to the ideal class group

The rows \((e_1, \cdots, e_N)\) of the relation matrix \(M\) satisfy

\[p_1^{e_1} \cdots p_N^{e_N} = (\alpha) \]
From relations to the ideal class group

The rows \((e_1, \cdots, e_N)\) of the relation matrix \(M\) satisfy

\[
p_1^{e_1} \cdots p_N^{e_N} = (\alpha)
\]

There are unimodular matrices \(U, V\) and integers \(d_i\) such that \(d_{i+1} \mid d_i\) and

\[
U \cdot M \cdot V = \\
\begin{pmatrix}
d_1 & 0 & \cdots & 0 \\
0 & d_2 & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & d_N \\
(0) & \end{pmatrix}
\]
From relations to the ideal class group

The rows \((e_1, \cdots, e_N)\) of the relation matrix \(M\) satisfy

\[
p_{e_1} \cdots p_{e_N}^N = (\alpha)
\]

There are unimodular matrices \(U, V\) and integers \(d_i\) such that \(d_{i+1} \mid d_i\) and

\[
U \cdot M \cdot V = \begin{pmatrix}
d_1 & 0 & \cdots & 0 \\
0 & d_2 & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & d_N \\
(0) & \end{pmatrix},
\]

If the rows of \(M\) generate all the possible relations then

\[
\text{Cl}(\mathcal{O}_K) = \mathbb{Z}/d_1\mathbb{Z} \times \cdots \times \mathbb{Z}/d_N\mathbb{Z}.
\]
From relations to the unit group

Let $M \in \mathbb{Z}^{N \times N'}$ be a relation matrix. That is,

$$\forall i, p_{1}^{m_{i,1}} \cdots p_{N}^{m_{i,N}} = (\alpha_{i}) = 1 \in \text{Cl}(\mathcal{O}_{K}).$$

Property

Let $X = (x_{1}, \cdots, x'_{N})$ be such that $XM = 0$. Then,

$$\beta_{X} := \alpha_{1}^{x_{1}} \cdots \alpha_{N}^{x'_{N}} \text{ is a unit}$$
From relations to the unit group

Let $M \in \mathbb{Z}^{N \times N'}$ be a relation matrix. That is,

$$\forall i, p_{\frac{m_i}{1}}^{m_i,1} \cdots p_{\frac{m_i}{N}}^{m_i,N} = (\alpha_i) = 1 \in \text{Cl}(\mathcal{O}_K).$$

Property

Let $X = (x_1, \cdots, x_N)$ be such that $XM = 0$. Then,

$$\beta_X := \alpha_1^{x_1} \cdots \alpha_N^{x'_N} \text{ is a unit}$$

We use the following strategy

- We derive units in compact representation from elements in $\ker(M)$.
- We construct a minimal generating set for U by induction.
The principal ideal problem (PIP)

Let $a \subseteq \mathcal{O}_K$. We wish to
- Decide if a is principal.
- If so, find $\alpha \in \mathcal{O}_K$ such that $a = (\alpha)$.
Connexion with the principal ideal problem

The principal ideal problem (PIP)

Let $\alpha \subseteq \mathcal{O}_K$. We wish to

- Decide if α is principal.
- If so, find $\alpha \in \mathcal{O}_K$ such that $\alpha = (\alpha)$.

Let $M \in \mathbb{Z}^{N \times N'}$ be a relation matrix. That is,

$$\forall i, p_1^{m_{i,1}} \cdots p_N^{m_{i,N}} = (\alpha_i) = 1 \in \text{Cl}(\mathcal{O}_K).$$
Connexion with the principal ideal problem

The principal ideal problem (PIP)

Let $\alpha \subseteq \mathcal{O}_K$. We wish to

- Decide if α is principal.
- If so, find $\alpha \in \mathcal{O}_K$ such that $\alpha = (\alpha)$.

Let $M \in \mathbb{Z}^{N \times N'}$ be a relation matrix. That is,

$$\forall i, p_1^{m_i,1} \cdots p_N^{m_i,N} = (\alpha_i) = 1 \in \text{Cl}(\mathcal{O}_K).$$

Algorithm for solving the PIP

- Decompose $\alpha = (\alpha)p_1^{y_1} \cdots p_N^{y_N}$.
- If $XA = Y$ has no solution, α is not principal.
- Otherwise, $\alpha = (\beta)$ with $\beta = \alpha \cdot \alpha_1^{x_1} \cdots \alpha_N^{x_N}$.
1 Motivation

2 Class group and unit group computation

3 Complexity aspects

4 Relations in the polarized class group
Choice of a factor base

The algorithm starts by choosing prime ideals generating $\text{Cl}(\mathcal{O})$

$$\mathcal{B} := \{ p \text{ prime} \mid N(p) \leq B \} = \{ p_1, \cdots, p_N \}$$
Choice of a factor base

The algorithm starts by choosing prime ideals generating $\text{Cl}(\mathcal{O})$

$$
\mathcal{B} := \{ p \text{ prime } | N(p) \leq B \} = \{ p_1, \cdots, p_N \}
$$

Asymptotic bounds with respect to $\Delta = \text{disc}(\mathcal{O})$

The most commonly used bounds for the asymptotic analysis are

- **Minkowski bound** : $B = O(\sqrt{|\Delta|})$ (unconditional).
- **Bach bound** : $B = O(\log^2 |\Delta|)$ (under GRH).
Choice of a factor base

The algorithm starts by choosing prime ideals generating $\text{Cl}(\mathcal{O})$

$$\mathcal{B} := \{p \text{ prime } | \mathcal{N}(p) \leq B\} = \{p_1, \cdots, p_N\}$$

Asymptotic bounds with respect to $\Delta = \text{disc}(\mathcal{O})$

The most commonly used bounds for the asymptotic analysis are

- Minkowski bound: $B = O(\sqrt{|\Delta|})$ (unconditional).
- Bach bound: $B = O(\log^2 |\Delta|)$ (under GRH).

Another bound, asymptotically larger, is used in practice (Belabas et al.)

$$\sum_{(m,p):\mathcal{N}(p^m) \leq B'} \frac{\log \mathcal{N}(p)}{\mathcal{N}(p^{m/2})} \left(1 - \frac{\log \mathcal{N}(p^m)}{\log(B')}\right) > \frac{1}{2} \log |\Delta| - 1.9n - 0.785r_1$$

$$+ \frac{2.468n + 1.832r_1}{\log(B')}.$$
Reduction of an ideal

Ideals have unique factorization, but it is possible to have

\[\prod_{i} p_i^{e_i} = (\alpha)a, \]

where \(\alpha \in K \) and \(a \neq \prod_{i} p_i^{e_i} \).
Reduction of an ideal

Ideals have unique factorization, but it is possible to have

$$\prod_i p_i^{e_i} = (\alpha)a,$$

where $\alpha \in K$ and $a \neq \prod_i p_i^{e_i}$.

In particular, if $N(a)$ is small, a has a better chance to be B-smooth.
Reduction of an ideal

Ideals have unique factorization, but it is possible to have

$$
\prod_{i} p_{i}^{e_i} = (\alpha)a,
$$

where $\alpha \in K$ and $a \neq \prod_{i} p_{i}^{e_i}$.

In particular, if $\mathcal{N}(a)$ is small, a has a better chance to be B-smooth.

LLL-reduction of an ideal

Let $a \subseteq \mathcal{O}_K$. We use LLL to find $a' = a \in \text{Cl}(\mathcal{O})$ with small norm.
Reduction of an ideal

Ideals have unique factorization, but it is possible to have

\[\prod_i p_i^{e_i} = (\alpha) a, \]

where \(\alpha \in K \) and \(a \neq \prod_i p_i^{e_i} \).

In particular, if \(N(a) \) is small, \(a \) has a better chance to be \(B \)-smooth.

LLL-reduction of an ideal

Let \(a \subseteq \mathcal{O}_K \). We use LLL to find \(a' = a \in \text{Cl}(\mathcal{O}) \) with small norm.

- \(b \leftarrow k a^{-1} \) where \(k \) is the denominator of \(a^{-1} \).
Reduction of an ideal

Ideals have unique factorization, but it is possible to have

\[
\prod_{i} p_i^{e_i} = (\alpha) a,
\]

where \(\alpha \in K \) and \(a \neq \prod_i p_i^{e_i} \).

In particular, if \(\mathcal{N}(a) \) is small, \(a \) has a better chance to be \(B \)-smooth.

LLL-reduction of an ideal

Let \(a \subseteq \mathcal{O}_K \). We use LLL to find \(a' = a \in \text{Cl}(\mathcal{O}) \) with small norm.

- \(b \leftarrow ka^{-1} \) where \(k \) is the denominator of \(a^{-1} \).
- Let \(\beta \) be the first element of an LLL-reduced basis of \(b \).
Reduction of an ideal

Ideals have unique factorization, but it is possible to have

$$\prod_i p_i^{e_i} = (\alpha)a,$$

where $\alpha \in K$ and $a \neq \prod_i p_i^{e_i}$.

In particular, if $N(a)$ is small, a has a better chance to be B-smooth.

LLL-reduction of an ideal

Let $a \subseteq \mathcal{O}_K$. We use LLL to find $a' = a \in \text{Cl}(\mathcal{O})$ with small norm.

- $b \leftarrow ka^{-1}$ where k is the denominator of a^{-1}.
- Let β be the first element of an LLL-reduced basis of b.
- $a' \leftarrow \left(\frac{\beta}{k}\right) a$
Reduction of an ideal

Ideals have unique factorization, but it is possible to have

\[\prod_{i} p_{i}^{e_{i}} = (\alpha)a, \]

where \(\alpha \in K \) and \(a \neq \prod_{i} p_{i}^{e_{i}}. \)

In particular, if \(N(a) \) is small, \(a \) has a better chance to be \(B \)-smooth.

LLL-reduction of an ideal

Let \(a \subseteq \mathcal{O}_{K} \). We use LLL to find \(a' = a \in \text{Cl}(\mathcal{O}) \) with small norm.

- \(b \leftarrow ka^{-1} \) where \(k \) is the denominator of \(a^{-1} \).
- Let \(\beta \) be the first element of an LLL-reduced basis of \(b \).
- \(a' \leftarrow \left(\frac{\beta}{k} \right) a \)

Then we have \(a' \subseteq \mathcal{O}_{K} \) and \(N(a') \leq 2^{O(n^{2})} \sqrt{|\Delta|} \).
The subexponential function

To measure the complexity of the operations, we use the subexponential function

\[L_\Delta(\alpha, \beta) := e^{\beta (\log |\Delta|)^\alpha (\log \log |\Delta|)^{1-\alpha}}. \]
The subexponential function

To measure the complexity of the operations, we use the subexponential function

\[L_\Delta(\alpha, \beta) := e^{\beta (\log |\Delta|)^\alpha (\log \log |\Delta|)^{1-\alpha}}. \]

Property

For \(\alpha \in [0, 1] \), \(L_\Delta(\alpha, \beta) \) is between polynomial and exponential in \(\log |\Delta| \).

\[L_\Delta(0, \beta) = (\log |\Delta|)^\beta \]
\[L_\Delta(1, \beta) = (|\Delta|)^\beta \]
The subexponential function

To measure the complexity of the operations, we use the subexponential function

\[L_\Delta(\alpha, \beta) := e^{\beta (\log |\Delta|)^\alpha (\log \log |\Delta|)^{1-\alpha}}. \]

Property

For \(\alpha \in [0, 1] \), \(L_\Delta(\alpha, \beta) \) is between polynomial and exponential in \(\log |\Delta| \).

\[
L_\Delta(0, \beta) = (\log |\Delta|)^\beta \\
L_\Delta(1, \beta) = (|\Delta|)^\beta
\]

Some interesting rules of calculation:

\[
L_\Delta(\alpha, \beta_1) \times L_\Delta(\alpha, \beta_2) = L_\Delta(\alpha, \beta_1 + \beta_2) \\
L_\Delta(\alpha, \beta)^k = L_\Delta(\alpha, k\beta).
\]
Smoothness probability

Let $\Psi(x, y)$ be the number of y-smooth ideals of norm bounded by x. Subexponential methods consist of falling in the range where

$$\frac{\Psi(x, y)}{x} = u^{-u(1+o(1))}, \quad u = \frac{\log x}{\log y} \quad (1).$$
Smoothness probability

Let $\Psi(x, y)$ be the number of y-smooth ideals of norm bounded by x. Subexponential methods consist of falling in the range where

$$\frac{\Psi(x, y)}{x} = u^{-u(1+o(1))}, \quad u = \frac{\log x}{\log y} \quad (1).$$

Known estimates (for which (1) holds)

- Over \mathbb{Z}: Hildebrand 84
- Over ideals of a number field: Sourfield 04 (GRH).
- Over principal ideals: conjectural.
Smoothness probability

Let $\Psi(x, y)$ be the number of y-smooth ideals of norm bounded by x. Subexponential methods consist of falling in the range where

$$\frac{\Psi(x, y)}{x} = u^{-u(1+o(1))}, \quad u = \frac{\log x}{\log y} \quad (1).$$

Known estimates (for which (1) holds)

- Over \mathbb{Z} : Hildebrand 84
- Over ideals of a number field : Sourfield 04 (GRH).
- Over principal ideals : conjectural.

If $x = L_\Delta(a, b)$ and $y = L_\Delta(c, d)$, then

$$\frac{\Psi(x, y)}{x} = L_\Delta \left(a - c, -\frac{c}{d}(b - d) + o(1) \right).$$
Hafner-McCurley and Buchmann computed the class group and unit group for fixed $n = [K : \mathbb{Q}]$ in time $L_\Delta(1/2, c)$.
Fixed degree number fields

Hafner-McCurley and Buchmann computed the class group and unit group for fixed $n = [K : \mathbb{Q}]$ in time $L_\Delta(1/2, c)$.

Creation of relations in $\text{Cl}(\mathcal{O})$

We choose $\mathcal{B} = \{p \mid \mathcal{N}(p) \leq B\}$ where $B = L_\Delta(1/2, c)$.
Fixed degree number fields

Hafner-McCurley and Buchmann computed the class group and unit group for fixed $n = [K : \mathbb{Q}]$ in time $L_\Delta(1/2, c)$.

Creation of relations in $\text{Cl}(\mathcal{O})$

We choose $\mathcal{B} = \{p \mid \mathcal{N}(p) \leq B\}$ where $B = L_\Delta(1/2, c)$.

- Draw $\alpha := \prod_i p_i^{e_i}$ at random where $p_i \in \mathcal{B}$.

\[\text{Biasse (U of C)} \]

large degree fields

October 2013 14 / 30
Fixed degree number fields

Hafner-McCurley and Buchmann computed the class group and unit group for fixed $n = [K : \mathbb{Q}]$ in time $L_\Delta(1/2, c)$.

Creation of relations in $\text{Cl}(\mathcal{O})$

We choose $\mathcal{B} = \{\mathfrak{p} \mid N(\mathfrak{p}) \leq B\}$ where $B = L_\Delta(1/2, c)$.

- Draw $\alpha := \prod_i p_i^{e_i}$ at random where $p_i \in \mathcal{B}$.
- Let $b = (\alpha)\alpha$ with $N(b) \leq 2^{O(n^2)} \sqrt{|\Delta|}$.

Fixed degree number fields

Hafner-McCurley and Buchmann computed the class group and unit group for fixed $n = [K : \mathbb{Q}]$ in time $L_\Delta(1/2, c)$.

Creation of relations in $\text{Cl}(\mathcal{O})$

We choose $\mathcal{B} = \{p | N(p) \leq B\}$ where $B = L_\Delta(1/2, c)$.

- Draw $\alpha := \prod_i p_i^{e_i}$ at random where $p_i \in \mathcal{B}$.
- Let $b = (\alpha)\alpha$ with $N(b) \leq 2^{O(n^2)} \sqrt{|\Delta|}$.
- If $b = \prod_j q_j$ is B-smooth, keep the relation $\prod_i p_i^{e_i} \cdot \prod_j q_j^{-1} = 1$.
Fixed degree number fields

Hafner-McCurley and Buchmann computed the class group and unit group for fixed $n = [K : \mathbb{Q}]$ in time $L_\Delta(1/2, c)$.

Creation of relations in $\text{Cl}(\mathcal{O})$

We choose $\mathcal{B} = \{p \mid \mathcal{N}(p) \leq B\}$ where $B = L_\Delta(1/2, c)$.

- Draw $\alpha := \prod_i p_i^{e_i}$ at random where $p_i \in \mathcal{B}$.
- Let $b = (\alpha)\alpha$ with $\mathcal{N}(b) \leq 2^{O(n^2)} \sqrt{|\Delta|}$.
- If $b = \prod_j q_j$ is \mathcal{B}-smooth, keep the relation $\prod_i p_i^{e_i} \cdot \prod_j q_j^{-1} = 1$.

- If n is fixed, we derive $|\mathcal{B}| = L_\Delta(1/2, c)$ relations in $L_\Delta(1/2, d)$.
Hafner-McCurley and Buchmann computed the class group and unit group for fixed $n = [K : \mathbb{Q}]$ in time $L_\Delta(1/2, c)$.

Creation of relations in $\text{Cl}(\mathcal{O})$

We choose $\mathcal{B} = \{p \mid \mathcal{N}(p) \leq B\}$ where $B = L_\Delta(1/2, c)$.

- Draw $a := \prod_i p_i^{e_i}$ at random where $p_i \in \mathcal{B}$.
- Let $b = (\alpha)a$ with $\mathcal{N}(b) \leq 2^{O(n^2)} \sqrt{|\Delta|}$.
- If $b = \prod_j q_j$ is \mathcal{B}-smooth, keep the relation $\prod_i p_i^{e_i} \cdot \prod_j q_j^{-1} = 1$.

- If n is fixed, we derive $|\mathcal{B}| = L_\Delta(1/2, c)$ relations in $L_\Delta(1/2, d)$.
- Then $\text{Cl}(\mathcal{O})$ and $U(\mathcal{O})$ are found in time $|\mathcal{B}|^k = L_\Delta(1/2, kd)$.
When \(n \to \infty \): changing the reduction algorithm

If LLL-reduce \(a := \prod_i p_i \), we get \(b \sim a \) with \(\mathcal{N}(b) \leq 2^{O(n^2)} \sqrt{|\Delta|} \).

- We have \(\mathcal{N}(b) \geq L_\Delta(2, c) \) for some \(c > 0 \).
- With \(B = L_\Delta(\alpha, d) \) for some \(\alpha < 1 \) and \(d > 0 \),

\[
E(\text{time to find } b \text{ } B \text{ – smooth}) \geq L_\Delta(2 - \alpha, e) \geq |\Delta|^e \text{ for some } e > 0.
\]
When $n \to \infty$: changing the reduction algorithm

If LLL-reduce $a := \prod_i p_i$, we get $b \sim a$ with $\mathcal{N}(b) \leq 2^{O(n^2)} \sqrt{\Delta}$.

- We have $\mathcal{N}(b) \geq L_\Delta(2, c)$ for some $c > 0$.
- With $B = L_\Delta(\alpha, d)$ for some $\alpha < 1$ and $d > 0$,

$$E(\text{time to find } b \text{ } B - \text{smooth}) \geq L_\Delta(2 - \alpha, e) \geq |\Delta|^e$$

for some $e > 0$.

BKZ reduction

Let $k > 0$, the BKZ$_k$ reduction allows to find $b = (\alpha)a$ with

$$\mathcal{N}(b) \leq 2^{O\left(\frac{n^2}{k}\right)} \sqrt{\Delta}$$

in time $O(2^k)$.

We replace LLL-reduction by BKZ$_k$ reduction with $k = \frac{2}{3}$. It runs in time $L_\Delta(\frac{2}{3} + \varepsilon, d)$ for $d > 0$ and arbitrary small $\varepsilon > 0$.

Biasse (U of C)
large degree fields
October 2013
When \(n \to \infty \): changing the reduction algorithm

If LLL-reduce \(a := \prod_i p_i \), we get \(b \sim a \) with \(\mathcal{N}(b) \leq 2^{O(n^2)} \sqrt{|\Delta|} \).

- We have \(\mathcal{N}(b) \geq L_\Delta(2, c) \) for some \(c > 0 \).
- With \(B = L_\Delta(\alpha, d) \) for some \(\alpha < 1 \) and \(d > 0 \),

\[
E(\text{time to find } b \text{ } B \text{-smooth}) \geq L_\Delta(2 - \alpha, e) \geq |\Delta|^e \text{ for some } e > 0.
\]

BKZ reduction

Let \(k > 0 \), the BKZ\(_k\) reduction allows to find \(b = (\alpha)a \) with

\[
\mathcal{N}(b) \leq 2^{O \left(\frac{n^2}{k} \right)} \sqrt{|\Delta|} \text{ in time } O(2^k).
\]

- We replace LLL-reduction by BKZ\(_k\) reduction with \(k = 2/3 \).
- It runs in time \(L_\Delta(2/3 + \varepsilon, d) \) for \(d > 0 \) and arbitrary small \(\varepsilon > 0 \).
Let K/\mathbb{Q} defined by $P \in \mathbb{Z}[X]$ with $n = \deg(P)$ and $d = \log(H(P))$.

- We draw $\phi = A(\theta)$ for $A \in \mathbb{Z}[X]$ with $k = \deg(A)$ and $a = \log(H(A))$.
- We have $\mathcal{N}(\phi) \leq na + dk + n \log k + k \log n$.
Let K/\mathbb{Q} defined by $P \in \mathbb{Z}[X]$ with $n = \deg(P)$ and $d = \log(H(P))$.

- We draw $\phi = A(\theta)$ for $A \in \mathbb{Z}[X]$ with $k = \deg(A)$ and $a = \log(H(A))$.
- We have $N(\phi) \leq na + dk + n \log k + k \log n$.

Property

When $n = \log(|\Delta|)^\alpha$ and $d = \log(|\Delta|)^{1-\alpha}$ for $\alpha \in \left] \frac{1}{3}, \frac{2}{3} \right]$
Class group and unit group of $\mathbb{Z}[[\theta]]$ in $L_\Delta(1/3)$

Let K/\mathbb{Q} defined by $P \in \mathbb{Z}[X]$ with $n = \text{deg}(P)$ and $d = \log(H(P))$.

- We draw $\phi = A(\theta)$ for $A \in \mathbb{Z}[X]$ with $k = \text{deg}(A)$ and $a = \log(H(A))$.
- We have $\mathcal{N}(\phi) \leq na + dk + n \log k + k \log n$.

Property

When $n = \log(|\Delta|)^\alpha$ and $d = \log(|\Delta|)^{1-\alpha}$ for $\alpha \in]\frac{1}{3}, \frac{2}{3}[$

- We can choose $A \in \mathbb{Z}[X]$ such that $\mathcal{N}(\phi) \leq L_\Delta \left(\frac{2}{3}, c\right)$ for $c > 0$.
Class group and unit group of $\mathbb{Z}[\theta]$ in $L_\Delta(1/3)$

Let K/\mathbb{Q} defined by $P \in \mathbb{Z}[X]$ with $n = \deg(P)$ and $d = \log(H(P))$.

- We draw $\phi = A(\theta)$ for $A \in \mathbb{Z}[X]$ with $k = \deg(A)$ and $a = \log(H(A))$.
- We have $N(\phi) \leq na + dk + n \log k + k \log n$.

Property

When $n = \log(|\Delta|)^\alpha$ and $d = \log(|\Delta|)^{1-\alpha}$ for $\alpha \in]\frac{1}{3}, \frac{2}{3}[$

- We can choose $A \in \mathbb{Z}[X]$ such that $N(\phi) \leq L_\Delta \left(\frac{2}{3}, c\right)$ for $c > 0$.
- It takes $L_\Delta \left(\frac{1}{3}, e\right)$ to find an $L_\Delta \left(\frac{1}{3}, d\right)$-smooth ϕ.
Class group and unit group of $\mathbb{Z}[\theta]$ in $L_\Delta(1/3)$

Let K/\mathbb{Q} defined by $P \in \mathbb{Z}[X]$ with $n = \text{deg}(P)$ and $d = \log(H(P))$.

- We draw $\phi = A(\theta)$ for $A \in \mathbb{Z}[X]$ with $k = \text{deg}(A)$ and $a = \log(H(A))$.
- We have $N(\phi) \leq na + dk + n \log k + k \log n$.

Property

When $n = \log(|\Delta|)^\alpha$ and $d = \log(|\Delta|)^{1-\alpha}$ for $\alpha \in]\frac{1}{3}, \frac{2}{3}[$,

- We can choose $A \in \mathbb{Z}[X]$ such that $N(\phi) \leq L_\Delta \left(\frac{2}{3}, c\right)$ for $c > 0$.
- It takes $L_\Delta \left(\frac{1}{3}, e\right)$ to find an $L_\Delta \left(\frac{1}{3}, d\right)$-smooth ϕ.

- We can compute $\text{Cl}(\mathbb{Z}[\theta])$ and $U(\mathbb{Z}[\theta])$ in $L_\Delta(1/3, f)$ for some $f > 0$.
- This does not extend to $\mathbb{Z}[\theta] \not\subset \mathcal{O}$.
Cyclotomic fields

We want to calculate $\text{Cl}(\mathbb{Z}[\theta])$ and $U(\mathbb{Z}[\theta])$ for $K = \mathbb{Q}[X]/X^N + 1$.

- $H(X^N + 1) = 1$.
- $\log |\text{Disc}(X^N + 1)| := \log |\Delta| = N \log(N)$.

Relation search

We draw $\phi \in \mathbb{Z}[\theta]$ of the form $A(\theta)$ with $k := \deg(A) = N$.

$a := \log(H(A)) = \log(N)$

$\log|\phi| \leq O(a \cdot N + k + N \log(k) + k \log(N)) \leq O(\log |\Delta|)$

This way, we can perform the relation search in time $L^\Delta(\frac{1}{2}, c)$ for some $c > 0$.
Cyclotomic fields

We want to calculate $\text{Cl}(\mathbb{Z}[\theta])$ and $U(\mathbb{Z}[\theta])$ for $K = \mathbb{Q}[X]/X^N + 1$.

- $H(X^N + 1) = 1$.
- $\log |\text{Disc}(X^N + 1)| := \log |\Delta| = N \log(N)$.

Relation search

We draw $\phi \in \mathbb{Z}[\theta]$ of the form $A(\theta)$ with

- $k := \deg(A) = N$.
- $a := \log(H(A)) = \log(N)$

$$\log \mathcal{N}(\phi) \leq O(a \cdot N + k + N \log(k) + k \log(N)) \leq O(\log |\Delta|)$$
Cyclotomic fields

We want to calculate $\text{Cl}(\mathbb{Z}[\theta])$ and $U(\mathbb{Z}[\theta])$ for $K = \mathbb{Q}[X]/X^N + 1$.

- $H(X^N + 1) = 1$.
- $\log |\text{Disc}(X^N + 1)| := \log |\Delta| = N \log(N)$.

Relation search

We draw $\phi \in \mathbb{Z}[\theta]$ of the form $A(\theta)$ with

- $k := \deg(A) = N$.
- $a := \log(H(A)) = \log(N)$

\[
\log \mathcal{N}(\phi) \leq O(a \cdot N + k + N \log(k) + k \log(N)) \leq O(\log |\Delta|)
\]

This way, we can perform the relation search in time $L_\Delta \left(\frac{1}{2}, c \right)$ for some $c > 0$.
Short generators of ideals

Let $\mathfrak{a} \subseteq \mathcal{O}$ a principal ideal and $U = \mu \times \langle \varepsilon_1 \rangle \times \cdots \times \langle \varepsilon_r \rangle$ the unit group.

- We know how to compute generators for U and a generator of \mathfrak{a}.
- We want a small generator of \mathfrak{a}.

Assume we find $\alpha \in \mathcal{O}$ such that $\mathfrak{a} = (\alpha)$, then

$$\forall (e_1, \cdots, e_r) \in \mathbb{Z}^r, \mathfrak{a} = (\varepsilon^{e_1}, \cdots, \varepsilon^{e_r} \alpha).$$

When $r = 1$, then we find $e \in \mathbb{Z}$ such that $\log |\alpha| - e \log |\varepsilon|$ has the desired size.

Let $\vec{v}_x = (\log |x_1|, \cdots, \log |x_r|) \in \mathbb{R}^r$. We want $\|\vec{\alpha} + \sum_i e_i \vec{\varepsilon}_i\|_2$ small.

In arbitrary dimension, we want to solve the closest vector problem.
Short generators of ideals

Let \(\alpha \subseteq \mathcal{O} \) a principal ideal and \(U = \mu \times \langle \varepsilon_1 \rangle \times \cdots \times \langle \varepsilon_r \rangle \) the unit group.

- We know how to compute generators for \(U \) and a generator of \(\alpha \).
- We want a small generator of \(\alpha \).

Assume we find \(\alpha \in \mathcal{O} \) such that \(\alpha = (\alpha) \), then

\[
\forall (e_1, \cdots, e_r) \in \mathbb{Z}^r, \quad \alpha = (\varepsilon_1^{e_1}, \cdots, \varepsilon_r^{e_r} \alpha).
\]
Short generators of ideals

Let $\alpha \subseteq \mathcal{O}$ a principal ideal and $U = \mu \times \langle \varepsilon_1 \rangle \times \cdots \times \langle \varepsilon_r \rangle$ the unit group.

- We know how to compute generators for U and a generator of α.
- We want a small generator of α.

Assume we find $\alpha \in \mathcal{O}$ such that $\alpha = (\alpha)$, then

$$
\forall (e_1, \cdots, e_r) \in \mathbb{Z}^r, \ a = (\varepsilon_1^{e_1}, \cdots, \varepsilon_r^{e_r} \alpha).
$$

When $r = 1$, then we find $e \in \mathbb{Z}$ such that $\log |\alpha| - e \log |\varepsilon|$ has the desired size.

- Let $\vec{v}_x = (\log |x|_1, \cdots, \log |x|_r) \in \mathbb{R}^r$.
- We want $||\vec{\alpha} + \sum_i e_i \vec{\varepsilon_i}||_2$ small.

In arbitrary dimension, we want to solve the closest vector problem.
The q-descent

Goal

Let $\mathcal{O} \subseteq \mathcal{O}_K$ be an order in K, and a $|\Delta|$-smooth $\alpha \subseteq \mathcal{O}$.

- We find a $L_\Delta(1/3, b)$-smooth decomposition of α in time $L_\Delta(1/3, c)$.
- This allows an $L_\Delta(1/3)$ algorithm to compute $\text{Cl}(\mathcal{O})$ and $U(\mathcal{O})$.
The q-descent

Goal

Let $\mathcal{O} \subseteq \mathcal{O}_K$ be an order in K, and a $|\Delta|$-smooth $\alpha \subseteq \mathcal{O}$.
- We find a $L_\Delta(1/3, b)$-smooth decomposition of α in time $L_\Delta(1/3, c)$.
- This allows an $L_\Delta(1/3)$ algorithm to compute $\text{Cl}(\mathcal{O})$ and $U(\mathcal{O})$.

Let $q \subseteq \mathcal{O}$ and v_q such that $q = q\mathcal{O} + (\theta - v_q)\mathcal{O}$. Then

$$L_q := \mathbb{Z}v_0 + \mathbb{Z}(v_1 - \theta) + \cdots + \mathbb{Z}(v_k - \theta^k) \subseteq q,$$

where $v_i = v_p^i \mod q$.
The q-descent

Goal

Let $\mathcal{O} \subseteq \mathcal{O}_K$ be an order in K, and a $\mid \Delta \mid$-smooth $a \subseteq \mathcal{O}$.

- We find a $L_\Delta(1/3, b)$-smooth decomposition of a in time $L_\Delta(1/3, c)$.
- This allows an $L_\Delta(1/3)$ algorithm to compute $\text{Cl}(\mathcal{O})$ and $\text{U}(\mathcal{O})$.

Let $q \subseteq \mathcal{O}$ and ν_q such that $q = q\mathcal{O} + (\theta - \nu_q)\mathcal{O}$. Then

$$\mathcal{L}_q := \mathbb{Z}\nu_0 + \mathbb{Z}(\nu_1 - \theta) + \cdots + \mathbb{Z}(\nu_k - \theta^k) \subseteq q,$$

where $\nu_i = \nu_p^i \mod q$.

- The $\phi \in \mathcal{L}_q$ are of the form $\phi = A(\theta)$ for $A \in \mathbb{Z}[X]$.
- We look for small elements $\phi \in \mathcal{L}_q$.
The q-descent

$$a = (\alpha) \cdot q_1 \cdots q_i \cdots q_k$$

$$\mathcal{N}(q_j) \in L_\Delta \left(\frac{1}{3} + \tau, 1 \right)$$
The q-descent

$$a = (\alpha) \cdot q_1 \cdots q_i \cdots q_k$$

$N(q_j) \in L_\Delta \left(\frac{1}{3} + \tau, 1 \right)$

find $\alpha_i \in q_i$ with $\langle \alpha_i \rangle / q_i \ L_\Delta(1/3 + \tau/2, c)$-smooth
The q-descent

\[a = (\alpha) \cdot q_1 \cdots q_i \cdots q_k \]

\[\mathcal{N}(q_j) \in L_\Delta \left(\frac{1}{3} + \tau, 1 \right) \]

Find $\alpha_i \in q_i$ with $(\alpha_i)/q_i \in L_\Delta(1/3 + \tau/2, c)$-smooth

\[q_i = (\alpha_i)q_1^{-1} \cdots q_i^{-1} \cdots q_k^{-1} \]

\[\mathcal{N}(q_i') \in L_\Delta \left(\frac{1}{3} + \frac{\tau}{2}, 1 \right) \]
The \(q \)-descent

\[
a = (\alpha) \cdot q_1 \cdots q_i \cdots q_k
\]

\[
\mathcal{N}(q_j) \in L_\Delta \left(\frac{1}{3} + \tau, 1 \right)
\]

\[\text{find } \alpha_i \in q_i \text{ with } (\alpha_i)/q_i \text{ } L_\Delta(1/3 + \tau/2, c)\text{-smooth}\]

\[
q_i = (\alpha_i)q_i^{-1} \cdots q_i^{-1} \cdots q_i^{-1}
\]

\[
\mathcal{N}(q_j') \in L_\Delta \left(\frac{1}{3} + \frac{\tau}{2}, 1 \right)
\]

Repeat until \(\tau \) is small enough
The q-descent

\[
a = (\alpha) \cdot q_1 \cdots q_i \cdots q_k
\]

find $\alpha_i \in q_i$ with $(\alpha_i)/q_i \in L_{\Delta}(1/3 + \tau/2, c)$-smooth

\[
q_i = (\alpha_i)q_i^{-1} \cdots q_i^{-1} \cdots q_i^{-1}
\]

Repeat until τ is small enough

Find $\alpha_i \in q'_i$ with $\mathcal{N}(\alpha_i) \in L_{\Delta}(1/3, c_\infty)$

\[
\mathcal{N}(q_j) \in L_{\Delta} \left(\frac{1}{3} + \tau, 1 \right)
\]

\[
\mathcal{N}(q'_j) \in L_{\Delta} \left(\frac{1}{3} + \frac{\tau}{2}, 1 \right)
\]
The q-descent

\[a = (\alpha) \cdot q_1 \cdots q_i \cdots q_k \]

\[\mathcal{N}(q_j) \in L_{\Delta} \left(\frac{1}{3} + \tau, 1 \right) \]

find $\alpha_i \in q_i$ with $(\alpha_i)/q_i \in L_\Delta(1/3 + \tau/2, c)$-smooth

\[q_i = (\alpha_i)q'_1^{-1} \cdots q'_i^{-1} \cdots q'_{k'}^{-1} \]

\[\mathcal{N}(q'_j) \in L_{\Delta} \left(\frac{1}{3} + \frac{\tau}{2}, 1 \right) \]

Repeat until τ is small enough

Find $\alpha_i \in q'_i$ with $\mathcal{N}(\alpha_i) \in L_\Delta(1/3, c_\infty)$

\[a = (\alpha) \cdot q''^e_1 \cdots q''^e_l \]

\[\mathcal{N}(q''_j) \in L_{\Delta} \left(\frac{1}{3}, c_\infty \right) \]
1 Motivation

2 Class group and unit group computation

3 Complexity aspects

4 Relations in the polarized class group
The polarized class group

Let K be a CM field, K_+ be the maximal totally real subfield of K and \mathcal{O} an order in K.

An ideal $a \subseteq \mathcal{O}$ is polarized if

$$\exists \alpha \in K_+ \text{ totally real such that } a\bar{a} = (\alpha).$$
The polarized class group

Let K be a CM field, K_+ be the maximal totally real subfield of K and \mathcal{O} an order in K.

An ideal $a \subseteq \mathcal{O}$ is polarized if

$$\exists \alpha \in K_+ \text{ totally real such that } a\bar{a} = (\alpha).$$

The polarized class group

$$\mathcal{C}(\mathcal{O}) = \{\text{Polarized ideals of } \mathcal{O}\}/\{\text{Principal polarized ideals}\}$$
The polarized class group

Let K be a CM field, K_+ be the maximal totally real subfield of K and \mathcal{O} an order in K.

An ideal $\alpha \subseteq \mathcal{O}$ is polarized if

$$\exists \alpha \in K_+ \text{ totally real such that } \alpha \bar{\alpha} = (\alpha).$$

The polarized class group

$$\mathcal{C}(\mathcal{O}) = \{ \text{Polarized ideals of } \mathcal{O} \}/\{ \text{Principal polarized ideals} \}$$

$\mathcal{C}(\mathcal{O})$ acts on isomorphism classes of principally polarized Abelian varieties with complex multiplication by \mathcal{O}.

- The class of α acts via an isogeny of degree $N(\alpha)$.
- This action preserves the polarization.
Relations in the polarized class group

The cost of evaluating the action of the class of $\alpha \subseteq \mathcal{O}$ grows with $\mathcal{N}(\alpha)$.
- The action of α is deduced from the action of ideals of smaller norm.
- This boils down to decomposing α in $\mathcal{C}(\mathcal{O})$.

Using smooth ideals

Let α be a polarized ideal of \mathcal{O} and $B > 0$. We rewrite the class of α as $\alpha = p_1 \cdots p_k$ in $\mathcal{C}(\mathcal{O})$, where $\mathcal{N}(p_i) \leq B$. Evaluating the action of α boils down to evaluating that of the $p_i \leq k$.

Ideals in \mathcal{O} are unlikely to be polarized. We need to produce relations between polarized ideals.
Relations in the polarized class group

The cost of evaluating the action of the class of $a \subseteq \mathcal{O}$ grows with $N(a)$.
- The action of a is deduced from the action of ideals of smaller norm.
- This boils down to decomposing a in $\mathcal{C}(\mathcal{O})$.

Using smooth ideals

Let a be a polarized ideal of \mathcal{O} and $B > 0$. We rewrite the class of a as

$$a = p_1 \cdots p_k \text{ in } \mathcal{C}(\mathcal{O}), \text{ where } N(p_i) \leq B.$$

Evaluating the action of a boils down to evaluating that of the $(p_i)_{i \leq k}$.

Relations in the polarized class group

The cost of evaluating the action of the class of \(a \subseteq \mathcal{O} \) grows with \(\mathcal{N}(a) \).
- The action of \(a \) is deduced from the action of ideals of smaller norm.
- This boils down to decomposing \(a \) in \(\mathcal{C}(\mathcal{O}) \).

Using smooth ideals

Let \(a \) be a polarized ideal of \(\mathcal{O} \) and \(B > 0 \). We rewrite the class of \(a \) as

\[
a = p_1 \cdots p_k \text{ in } \mathcal{C}(\mathcal{O}), \text{ where } \mathcal{N}(p_i) \leq B.
\]

Evaluating the action of \(a \) boils down to evaluating that of the \((p_i)_{i \leq k}\).

- Ideals in \(\mathcal{O} \) are unlikely to be polarized.
- We need to produce relations between polarized ideals.
From relations in $\text{Cl}(\mathcal{O})$ to relations in $\mathcal{C}(\mathcal{O})$ Bisson-11

Let K a CM field with type Φ and reflex field K^r with type Φ^r. We have maps between K and K^r.

- Type norm : $\mathcal{N}_\Phi : x \in K \rightarrow \prod_{\phi \in \Phi} \phi(x) \in K^r$.
- Reflex type norm : $\mathcal{N}_{\Phi^r} : x \in K^r \rightarrow \prod_{\phi \in \Phi^r} \phi(x) \in K$.
From relations in $\text{Cl}(O)$ to relations in $\mathcal{C}(O)$ Bisson-11

Let K a CM field with type Φ and reflex field K^r with type Φ^r. We have maps between K and K^r.

- **Type norm**: $N_\Phi : x \in K \rightarrow \prod_{\phi \in \Phi} \phi(x) \in K^r$.
- **Reflex type norm**: $N_{\Phi^r} : x \in K^r \rightarrow \prod_{\phi \in \Phi^r} \phi(x) \in K$.

Property

Let $\mathfrak{a} \subseteq O$ be an ideal of O and $\mathfrak{a}^r \subseteq O_{K^r}$ be an ideal of O_{K^r}.

- $N_\Phi(\mathfrak{a})$ is an ideal of O_{K^r} and $N(\mathfrak{a}^r)$ is an ideal of O_K.
- $N_{\Phi^r}(\mathfrak{a}^r)$ is a polarized ideal of O_K.

Biasse (U of C) large degree fields October 2013 23 / 30
From relations in \(\text{Cl}(\mathcal{O}) \) to relations in \(\mathcal{C}(\mathcal{O}) \) Bisson-11

Let \(K \) a CM field with type \(\Phi \) and reflex field \(K^r \) with type \(\Phi^r \). We have maps between \(K \) and \(K^r \).

- Type norm: \(N_{\Phi} : x \in K \to \prod_{\phi \in \Phi} \phi(x) \in K^r \).
- Reflex type norm: \(N_{\Phi^r} : x \in K^r \to \prod_{\phi \in \Phi^r} \phi(x) \in K \).

Property

Let \(\mathfrak{a} \subseteq \mathcal{O} \) be an ideal of \(\mathcal{O} \) and \(\mathfrak{a}^r \subseteq \mathcal{O}_{Kr} \) be an ideal of \(\mathcal{O}_{Kr} \).

- \(N_{\Phi}(\mathfrak{a}) \) is an ideal of \(\mathcal{O}_{Kr} \) and \(N(\mathfrak{a}^r) \) is an ideal of \(\mathcal{O}_K \).
- \(N_{\Phi^r}(\mathfrak{a}^r) \) is a polarized ideal of \(\mathcal{O}_K \).

We draw a relation \(p_1 \cdots p_k = 1 \) in \(\text{Cl}(\mathcal{O}) \) and deduce the relation

\[
N_{\Phi^r}(N_{\Phi}(p_1)) \cdots N_{\Phi^r}(N_{\Phi}(p_k)) = 1 \in \mathcal{C}(\mathcal{O}).
\]
Relations in $\mathcal{C}(\mathcal{O})$

\[\begin{align*}
K_{\mathcal{C}} & \quad \mid \quad K = p_1 \cdots p_k \quad \mid \quad K^r = p'_1 \cdots p'_k \\
K_{\mathcal{C}} & \quad \mid \quad K = (\alpha_1, \Omega_1) \cdots (\alpha_k, \Omega_k) \quad \mid \quad K^r = (\beta_1, \Omega_1) \cdots (\beta_k, \Omega_k) \\
\end{align*} \]
Relations in $\mathcal{C}(\mathcal{O})$

\[(\alpha) = p_1 \cdots p_k \]
Relations in $\mathcal{C}(\mathcal{O})$

Φ.

K^c.

K_r

N_Φ

$\Phi(p_i) = p'_i$

$(\alpha) = p_1 \cdots p_k$

$(\alpha') = p'_1 \cdots p'_k$
Relations in $\mathcal{C}(\mathcal{O})$

\[(\alpha) = p_1 \cdots p_k \]
\[(\beta) = (q_1, \beta_1) \cdots (q_k, \beta_k) \]
\[N_\Phi(p_i) = p'_i \]
\[N_{\Phi r}(p'_j) = q_j \]
\[(\alpha') = p'_1 \cdots p'_k \]
The case of $g \to \infty$

Let V/F_q be a dimension g Abelian variety defined over \mathbb{F}_q with CM by an order \mathcal{O} in K.

- We want to derive relations in $\mathcal{C}(\mathcal{O})$.
- We want to establish conditions on K to use the q-descent.
The case of $g \to \infty$

Let V/F_q be a dimension g Abelian variety defined over F_q with CM by an order \mathcal{O} in K.

- We want to derive relations in $\mathcal{C}(\mathcal{O})$.
- We want to establish conditions on K to use the q-descent.

$K = \mathbb{Q}[X]/\chi(X)$ is defined by a q-Weil polynomial of the form

$$
\chi(X) = \prod_{j \leq 2g} (X - \sqrt{q} e^{i\theta_j}).
$$
The case of $g \to \infty$

Let V/\mathbb{F}_q be a dimension g Abelian variety defined over \mathbb{F}_q with CM by an order \mathcal{O} in K.

- We want to derive relations in $\mathcal{C}(\mathcal{O})$.
- We want to establish conditions on K to use the q-descent.

$K = \mathbb{Q}[X]/\chi(X)$ is defined by a q-Weil polynomial of the form

$$\chi(X) = \prod_{j \leq 2g} (X - \sqrt{q}e^{i\theta_j}).$$

Let $\Delta = \text{disc}(\chi)$, do $n = \deg(\chi)$ and $d = \log(H(\chi))$ satisfy

$$n = n_0(\log |\Delta|)^\alpha(1 + o(1))$$

$$d = d_0(\log |\Delta|)^{1-\alpha}(1 + o(1)),$$

for $\alpha \in]0, 1[$ and $n_0, d_0 > 0$, allowing a subexponential q-descent?
The case of $g \to \infty$

Let $\log |\Delta'| := g^2 \log(q)$, and $g = \log(q)^\delta$ for some $\delta > 0$, then

- $n = n_0 \log |\Delta'|^\alpha (1 + o(1))$.
- $d = d_0 \log |\Delta'|^{1-\alpha} (1 + o(1))$.

We can have subexponential time with respect to $\log |\Delta'|$. Do we have $\log |\Delta'| \sim \log |\text{Disc}(\chi)|$?

The discriminant of χ is given by $\text{Disc}(\chi) = (\sqrt{q} \Delta^{\delta}) \prod_{j \neq k} (e^{i \theta_j} - e^{i \theta_k})$.

We have the upper bound $\log |\text{Disc}(\chi)| \leq O(g^2 \log(q)) (1 + o(1))$. But we might have $\log |\text{Disc}(\chi)| \ll g^2 \log(q)$.

If $|e^{i \theta_j} - e^{i \theta_k}| \geq \frac{1}{p^\epsilon}$ for some $\epsilon < 1/2$, then $\log |\text{Disc}(\chi)| \gtrsim O(g^2 \log(q))$.

Biasse (U of C) large degree fields October 2013 26 / 30
The case of $g \to \infty$

Let $\log |\Delta'| := g^2 \log(q)$, and $g = \log(q)\delta$ for some $\delta > 0$, then

- $n = n_0 \log |\Delta'|^\alpha (1 + o(1))$.
- $d = d_0 \log |\Delta'|^{1-\alpha} (1 + o(1))$.

We can have subexponential time with respect to $\log |\Delta'|$. Do we have $\log |\Delta'| \sim \log |\text{Disc}(\chi)|$?
The case of $g \rightarrow \infty$

Let $\log |\Delta'| := g^2 \log(q)$, and $g = \log(q)^\delta$ for some $\delta > 0$, then

- $n = n_0 \log |\Delta'|^\alpha (1 + o(1))$.
- $d = d_0 \log |\Delta'|^{1-\alpha} (1 + o(1))$.

We can have subexponential time with respect to $\log |\Delta'|$. Do we have $\log |\Delta'| \sim \log |\text{Disc}(\chi)|$?

The discriminant of χ is given by

$$\text{Disc}(\chi) = (\sqrt{q})^{(2g \choose g)} \prod_{j \neq k} \left(e^{i\theta_j} - e^{i\theta_k} \right).$$
The case of $g \to \infty$

Let $\log |\Delta'| := g^2 \log(q)$, and $g = \log(q)^\delta$ for some $\delta > 0$, then

- $n = n_0 \log |\Delta'|^\alpha (1 + o(1))$.
- $d = d_0 \log |\Delta'|^{1-\alpha} (1 + o(1))$.

We can have subexponential time with respect to $\log |\Delta'|$. Do we have $\log |\Delta'| \sim \log |\text{Disc}(\chi)|$?

The discriminant of χ is given by

$$\text{Disc}(\chi) = (\sqrt{q})^{2g \choose g} \prod_{j \neq k} \left(e^{i\theta_j} - e^{i\theta_k} \right).$$

- We have the upper bound $\log |\text{Disc}(\chi)| \leq O(g^2 \log(q))(1 + o(1))$.
- But we might have $\log |\text{Disc}(\chi)| \ll g^2 \log(q)$.
The case of $g \to \infty$

Let $\log |\Delta'| := g^2 \log(q)$, and $g = \log(q)^\delta$ for some $\delta > 0$, then

- $n = n_0 \log |\Delta'|^\alpha (1 + o(1))$.
- $d = d_0 \log |\Delta'|^{1-\alpha} (1 + o(1))$.

We can have subexponential time with respect to $\log |\Delta'|$. Do we have $\log |\Delta'| \sim \log |\text{Disc}(\chi)|$?

The discriminant of χ is given by

$$\text{Disc}(\chi) = (\sqrt{q})^{\binom{2g}{g}} \prod_{j \neq k} \left(e^{i\theta_j} - e^{i\theta_k} \right).$$

- We have the upper bound $\log |\text{Disc}(\chi)| \leq O(g^2 \log(q))(1 + o(1))$.
- But we might have $\log |\text{Disc}(\chi)| \ll g^2 \log(q)$.

If $|e^{i\theta_j} - e^{i\theta_k}| \geq \frac{1}{p^\varepsilon}$ for some $\varepsilon < 1/2$, then $\log |\text{Disc}(\chi)| \gtrsim O(g^2 \log(q))$.
Choosing roots of $\chi(X)$

$$d = \sin(\theta_2 - \theta_1) \sim \theta_2 - \theta_1$$
Choosing roots of $\chi(X)$

$$d = \sin(\theta_2 - \theta_1) \sim \theta_2 - \theta_1$$
Choosing roots of $\chi(X)$

$$d = \sin(\theta_2 - \theta_1) \sim \theta_2 - \theta_1$$
Distribution of eigenangles

We study the case where $g \sim (\log(q))^\delta$ for some $\delta > 0$.

- $|e^{i\theta_j} - e^{i\theta_k}| < \frac{1}{p^\varepsilon}$ implies $\theta_j - \theta_k \to 0$.
- In this case, $|e^{i\theta_j} - e^{i\theta_k}| \sim |\theta_j - \theta_k| := \Theta < \frac{1}{p^\varepsilon}$.
Distribution of eigenangles

We study the case where $g \sim (\log(q))^\delta$ for some $\delta > 0$.

- $|e^{i\theta_j} - e^{i\theta_k}| < \frac{1}{p^\epsilon}$ implies $\theta_j - \theta_k \to 0$.
- In this case, $|e^{i\theta_j} - e^{i\theta_k}| \sim |\theta_j - \theta_k| := \Theta < \frac{1}{p^\epsilon}$.

If the $(\theta_j)_{j \leq 2g}$ were equidistributed then we would have

$$P \left(\forall j, k, |e^{i\theta_j} - e^{i\theta_k}| \geq \frac{1}{p^\epsilon} \right) = \prod_{l \leq 2g} (1 - l \cdot \Theta) \to 1.$$
Distribution of eigenangles

We study the case where $g \sim (\log(q))^\delta$ for some $\delta > 0$.

- $|e^{i\theta_j} - e^{i\theta_k}| < \frac{1}{p^\epsilon}$ implies $\theta_j - \theta_k \to 0$.
- In this case, $|e^{i\theta_j} - e^{i\theta_k}| \sim |\theta_j - \theta_k| := \Theta < \frac{1}{p^\epsilon}$.

If the $(\theta_j)_{j \leq 2g}$ were equidistributed then we would have

$$P\left(\forall j, k, |e^{i\theta_j} - e^{i\theta_k}| \geq \frac{1}{p^\epsilon}\right) = \prod_{l \leq 2g} (1 - l \cdot \Theta) \to 1.$$

Katz-Sarnak

The distribution of the eigenangles is “close” to uniform

$$\lim_{g \to \infty} \lim_{q \to \infty} \left(\frac{1}{|\mathcal{M}_g(\mathbb{F}_q)|}\right) \sum_{C \in \mathcal{M}_g(\mathbb{F}_q)} \text{discrep}(\mu(\text{univ}), \mu(C/\mathbb{F}_q)) = 0.$$
Computing the action of $\mathfrak{C}(\mathcal{O})$

Let V/\mathbb{F}_q of dimension g and a polarized ideal (α, l) with $\mathcal{N}(\alpha) = lg$.

- We represent V by a theta structure of level n.
- We want to evaluate the action of α on the isomorphism class of V.

Let H be an isotropic subgroup of V isomorphic to $(\mathbb{Z}/l\mathbb{Z})^g$.

Evaluating ϕ with $\ker(\phi) = H$ takes $O(l^{3g} + o(1))$ operations in \mathbb{F}_q.

Computing H boils down to computing the l-torsion.

1. Compute the zeta function $Z_A(T)$ of A/\mathbb{F}_q. Set $L \leftarrow \emptyset$.
2. Write $#A(\mathbb{F}_q^{lg-1})$ as ml^k where $l \nmid m$.
3. Let $P = mO$ where O is a random point of $A(\mathbb{F}_q^{lg-1})$.
4. If $P/\mathbb{F}_q \in \langle L \rangle \subseteq A[1/l]$, then $L \leftarrow L \cup P$.
Computing the action of $\mathfrak{C}(\mathcal{O})$

Let V/\mathbb{F}_q of dimension g and a polarized ideal (α, l) with $N(\alpha) = l^g$.
- We represent V by a theta structure of level n.
- We want to evaluate the action of α on the isomorphism class of V.

Computation of an $(\mathbb{Z}/l\mathbb{Z})^g$-isogeny

- Let \mathcal{H} be an isotropic subgroup of V isomorphic to $(\mathbb{Z}/l\mathbb{Z})^g$.
- Evaluating ϕ with $\ker(\phi) = \mathcal{H}$ takes $O(l^{3g}+o(1))$ operations in \mathbb{F}_q.
Computing the action of $\mathfrak{C}(\mathcal{O})$

Let V/F_q of dimension g and a polarized ideal (α, l) with $\mathcal{N}(\alpha) = l^g$.

- We represent V by a theta structure of level n.
- We want to evaluate the action of α on the isomorphism class of V.

Computation of an $(\mathbb{Z}/l\mathbb{Z})^g$-isogeny

- Let \mathcal{H} be an isotropic subgroup of V isomorphic to $(\mathbb{Z}/l\mathbb{Z})^g$.
- Evaluating ϕ with $\ker(\phi) = \mathcal{H}$ takes $O(l^{3g+o(1)})$ operations in F_q.

Computing \mathcal{H} boils down to computing the l-torsion.

1. Compute the zeta function $Z_A(T)$ of A/F_q. Set $L \leftarrow \{\}$
2. Write $\#A(F_{q^{lg-1-1}})$ as ml^k where $l \nmid m$.
3. Let $P = mO$ where O is a random point of $A(F_{q^{lg-1-1}})$.
4. If $P \notin \langle L \rangle \subseteq A[l]$ then $L \leftarrow L \cup P$.
Subexponential relations in $\mathfrak{C}(\mathcal{O})$

We have $g \sim \log(q)^\delta$. Our goal is to find $\alpha, \beta < 1$ such that

- The factor base is $\mathcal{B} = \{p \mid N(p) \leq L_\Delta(\alpha, c + o(1))\}$.
- We can find and evaluate \mathcal{B}-smooth relations in time $L_\Delta(\beta, d + o(1))$.

were $c, d > o$ and $\log |\Delta| = g^2 \log(q)$.

\[
\]
Subexponential relations in $\mathfrak{C}(\mathcal{O})$

We have $g \sim \log(q)^\delta$. Our goal is to find $\alpha, \beta < 1$ such that

- The factor base is $\mathcal{B} = \{p \mid N(p) \leq L_\Delta(\alpha, c + o(1))\}$.
- We can find and evaluate \mathcal{B}-smooth relations in time $L_\Delta(\beta, d + o(1))$. were $c, d > o$ and $\log |\Delta| = g^2 \log(q)$.

Cost of the evaluation

- For $N(p) = 1$, the evaluation of the action of p takes $l^{O(g)}$.
- We want to adjust the trade-off between $|\mathcal{B}|$ and the expected time.
Subexponential relations in $\mathcal{O}(\mathcal{O})$

We have $g \sim \log(q)^{\delta}$. Our goal is to find $\alpha, \beta < 1$ such that

- The factor base is $B = \{p \mid \mathcal{N}(p) \leq L_\Delta(\alpha, c + o(1))\}$.
- We can find and evaluate B-smooth relations in time $L_\Delta(\beta, d + o(1))$.

were $c, d > o$ and $\log \mid \Delta \mid = g^2 \log(q)$.

Cost of the evaluation

- For $\mathcal{N}(p) = 1$, the evaluation of the action of p takes $1^{O(g)}$.
- We want to adjust the trade-off between $|B|$ and the expected time.

We have subexponential time when the conditions are satisfied

- $1 - \beta \geq \delta \geq 1 - \alpha - \beta$.
- $\beta + 2\alpha \geq 1$ and $2\beta + \alpha \geq 1$.
- $\beta > \delta$ or $2\beta + \alpha = 1$.

For example: $\alpha = \beta = 1/3$ works for $\frac{1}{3} \leq \delta \leq \frac{2}{3}$.
Thank you for your attention.