On algorithms for finding the missing functions

Ruud Pellikaan

Let X be curve defined over a finite field \mathbb{F}_q. Let Q be an \mathbb{F}_q-rational point of X. Let $\mathbb{F}_q(X)$ be the function field of rational functions on X, and $\mathbb{F}_q(X, Q)$ the ring of rational functions on X that are regular outside Q.

In the construction of one-point algebraic geometric codes and their decoding according to Feng-Rao the ring $\mathbb{F}_q(X, Q)$ plays a crucial role. Therefore we are looking for an "easy" and "explicit" description of this ring.

Suppose that the curve X is given by an affine part X_0 in affine space \mathbb{A}^m as the zero set of the equations $F_1 = \cdots = F_l = 0$. Then the coordinate ring of X_0 is given by

$$R := \mathbb{F}_q[X_1, \ldots, X_m]/(F_1, \ldots, F_l).$$

Suppose that Q_1, \ldots, Q_l are the points at infinity and $Q = Q_1$. Then $\mathbb{F}_q(X, Q) \subseteq R$. Let S be the vector space over \mathbb{F}_q generated by the monomials in X_1, \ldots, X_m that are elements of $\mathbb{F}_q(X, Q)$. Then S is in fact a subring of $\mathbb{F}_q(X, Q)$. Suppose that $\mathbb{F}_q(X, Q)$ is a finite dimensional extension of S over \mathbb{F}_q, then $\mathbb{F}_q(X, Q)$ is the integral closure of S in R. A basis of this extension is called a basis of missing functions.

In this lecture I have reported on the computation of a basis of missing functions in the work of:

1. Aleshnikov, Deolalikar, Kumar, Shum and Stichtenoth, on asymptotically good towers of function fields (curves),

2. Peter Beelen, on plane curves of type II,

3. Leonard, on the q-th power algorithm to compute the normalization (integral closure), and its generalization.