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1. Introduction

The success of Goppa construction ([5]) of codes over algebraic curves in breaking the 
Gilbert-Varshamov bound (see Tsfasman-Vlăduţ-Zink bound in [19]) has been generating 
much interest over the last forty years. This gave birth to the field of Algebraic Geometry 
codes. It results a situation with a rich background and many examples of evaluation 
codes derived from algebraic curves (see for instance [18]). The study of Goppa construc-
tion from higher dimensional varieties has begun with few exceptions in the first decade 
of the twenty-first century. Although the construction holds in any dimension, the main 
focus has been put on algebraic surfaces.

The case of ruled surfaces is considered by Aubry in [1]. The case of toric surfaces 
is addressed among others by Little and Schenck in [12] and by Nardi in [16]. Voloch 
and Zarzar introduce the strategy of looking for surfaces with small Picard number ([21]
and [23]). This approach is discussed in [13] and used by Couvreur in [2] to obtain very 
good codes over rational surfaces. In a parallel direction Little and Schenck ([13]) stress 
the influence of the sectional genus of the surface, that is the genus of a generic section. 
Finally, Haloui investigates the case of simple Jacobians of curves of genus 2 in [6].

The aim of this article is to study codes constructed from general abelian surfaces. 
While from the geometric point of view (i.e. over an algebraically closed field) a princi-
pally polarized abelian surface is isomorphic either to the Jacobian of a curve of genus 
2 or to the product of two elliptic curves, the landscape turns to be richer from the 
arithmetic point of view. Weil proved that over a finite field k there is exactly one more 
possibility, that is the case of the Weil restriction of an elliptic curve defined over a 
quadratic extension of k (see for instance [9, Th.1.3]). Moreover, one can also consider 
abelian surfaces which do not admit a principal polarization.

The main contribution of this paper is twofold. First, we give a lower bound on 
the minimum distance of codes constructed over general abelian surfaces. Secondly, we 
sharpen this lower bound for abelian surfaces which do not contain absolutely irreducible 
curves defined over Fq of arithmetic genus less or equal than a fixed integer ℓ. In order 
to summarise our results in the following theorem, let us consider an ample divisor H
on an abelian surface A and let us denote by C(A, rH) the generalised evaluation code 
whose construction is recalled in Section 2.

Theorem. (Theorem 2.2 and Theorem 3.3) Let A be an abelian surface defined over Fq

of trace Tr(A). Let m = ⌊2√q⌋, H be an ample divisor on A rational over Fq and r be 
a positive integer large enough so that rH is very ample.

Then, the minimum distance d(A, rH) of the code C(A, rH) satisfies

d(A, rH) ≥ #A(Fq) − rH2(q + 1 − Tr(A) + m) − r2m
H2

2 . (1)

Moreover, if A is simple and contains no absolutely irreducible curves of arithmetic genus 
ℓ or less for some positive integer ℓ, then
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d(A, rH) ≥ #A(Fq) − max
(⌊

r

√
H2

2

⌋
(ℓ− 1),ϕ(1),ϕ

(⌊
r

√
H2

2ℓ

⌋))
, (2)

where

ϕ(x) :=m

(
r

√
H2

2 − x
√
ℓ

)2

+ 2m
√
ℓ

(
r

√
H2

2 − x
√
ℓ

)

+ x
(
q + 1 − Tr(A) + (ℓ− 1)(m−

√
ℓ)
)

+ r

√
H2

2 (ℓ− 1).

If A is simple, then we can take ℓ = 1 and the lower bound (2) is nothing but Haloui’s 
one [6] proved in the case of simple Jacobian surfaces Jac(C) with the choice H = C

(see Remark 3.5).
It is worth to notice that the second bound is better for larger ℓ (at least for q

sufficiently large and 1 < r <
√
q, see Remark 3.6). In particular, the bound obtained 

for ℓ = 2 improves the one obtained for ℓ = 1. This leads us to investigate the case 
of abelian surfaces with no absolutely irreducible curves of genus 1 nor 2, which are 
necessarily either Weil restrictions of elliptic curves on a quadratic extension, either not 
principally polarizable abelian surfaces, from the classification given above. The following 
proposition lists all situations for which we can apply bound (2) with ℓ = 2. The key 
point of the proof is a characterisation of isogeny classes of abelian surfaces containing 
Jacobians of curves of genus 2 obtained by Howe, Nart and Ritzenthaler ([9]).

Proposition. (Proposition 4.2 and Proposition 4.3) The bound on the minimum distance 
(2) of the previous theorem holds when taking ℓ = 2 in the two following cases:

(i) Let A be an abelian surface defined over Fq which does not admit a principal polar-
ization. Then A does not contain absolutely irreducible curves of arithmetic genus 
0, 1 nor 2.

(ii) Let q be a power of a prime p. Let E be an elliptic curve defined over Fq2 of Weil 
polynomial fE/Fq2

(t) = t2−Tr(E/Fq2)t +q2. Let A be the Fq2/Fq-Weil restriction of 
the elliptic curve E. Then A does not contain absolutely irreducible curves defined 
over Fq of arithmetic genus 0, 1 nor 2 if and only if one of the following cases holds:
(1) Tr(E/Fq2) = 2q − 1;
(2) p > 2 and Tr(E/Fq2) = 2q − 2;
(3) p ≡ 11 mod 12 or p = 3, q is a square and Tr(E/Fq2) = q;
(4) p = 2, q is nonsquare and Tr(E/Fq2) = q;
(5) q = 2 or q = 3 and Tr(E/Fq2) = 2q.

The paper is structured as follows. In Section 2 we consider evaluation codes on general 
abelian surfaces. We compute their dimension and prove the lower bound (1) on their 
minimum distance. Section 3 is devoted to the case of simple abelian surfaces, that is 
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those for which we can choose some ℓ ≥ 1. We derive the lower bound (2) depending on 
the minimum arithmetic genus of absolutely irreducible curves lying on the surface. In 
Section 4 we consider abelian surfaces which do not admit a principal polarization and 
Weil restrictions of elliptic curves to find all abelian surfaces defined over a finite field 
containing no absolutely irreducible curves of arithmetic genus 0, 1 and 2. Finally, in 
Section 5, we make explicit the lower bounds for the minimum distance.

2. Codes from abelian surfaces

2.1. Some facts on intersection theory

One of the ingredients of the proofs of Theorems 2.2 and 3.3 is the classical inequality 
induced by the Hodge index theorem (3) in the context of intersection theory on surfaces. 
In this subsection, we briefly recall this context and the main properties we need. We 
refer the reader to [7, §V] for further details.

Let X be a nonsingular, projective, absolutely irreducible algebraic surface defined 
over Fq. A divisor on X is an element of the free abelian group generated by the irre-
ducible curves on X. Divisors associated to rational functions on X are called principal. 
Two divisors on X are said to be linearly equivalent if their difference is a principal 
divisor. We write Pic(X) for the group of divisors of X modulo linear equivalence. The 
Néron-Severi group of X, denoted by NS(X), is obtained by considering the coarser al-
gebraic equivalence we do not define here since it coincides for abelian varieties (see [11, 
§IV]) with the following numerical equivalence. A divisor D on X is said to be numeri-
cally equivalent to zero, which we denote by D ≡ 0, if the intersection product C.D is 
zero for all curves C on X. This gives the coarsest equivalence relation on divisors on 
X and we denote the group of divisors modulo numerical equivalence by Num(X). We 
have thus Num(X) = NS(X), so we will refer to these two equivalence relations with no 
distinction. We write simply D for the class of a divisor D in NS(X).

We recall the Nakai-Moishezon criterion in the context of surfaces: a divisor H is ample 
if and only if H2 > 0 and H.C > 0 for all irreducible curves C on X ([7, §V, Th.1.10]). 
The Hodge index theorem states that the intersection pairing is negative definite on the 
orthogonal complement of the line generated by an ample divisor. From this, it easily 
follows that

H2D2 ≤ (H.D)2 (3)

for any pair of divisors D, H with H ample, and that equality holds if and only if D and 
H are numerically proportional.

2.2. Evaluation codes

This subsection begins by a reminder about definitions of the evaluation code we 
study. To this end we consider again X a nonsingular, projective, absolutely irreducible 



Y. Aubry et al. / Finite Fields and Their Applications 70 (2021) 101791 5

algebraic surface defined over Fq and G a divisor on X. The Riemann-Roch space L(G)
is defined by

L(G) = {f ∈ Fq(X) \ {0} | (f) + G ≥ 0} ∪ {0}.

The Algebraic Geometry code C(X, G) is sometimes presented from a functional point 
of view as the image of the following linear evaluation map ev

ev : L(G) −→ Fn
q

f +−→ (f(P1), . . . , f(Pn))

which is clearly well defined when considering {P1, . . . , Pn} ⊂ X(Fq) a subset of rational 
points which are on X but not in the support of G. In fact, this construction naturally 
extends to the case where {P1, . . . , Pn} = X(Fq) is an enumeration of the whole set of 
the rational points on X, as noticed by Manin and Vlăduţ in [20, §3.1]. Indeed, one can 
rather consider the image of the following map, where we denote by L the line bundle 
associated to L(G), by LPi the stalks at the Pi’s, and by sPi the images of a global 
section s ∈ H0 (X,L) in the stalks

ev : H0 (X,L) −→
n⊕

i=1
LPi = Fn

q

s +−→ (sP1 , . . . , sPn).

Different choices of isomorphisms between the fibres LPi and Fq give rise to different 
maps but lead to equivalent codes. See also [10] or [1] for another constructive point of 
view.

Throughout the whole paper we associate to a nonzero function f ∈ L(G) an effective 
rational divisor

D := G + (f) =
k∑

i=1
niDi, (4)

where ni > 0 and where each Di is an Fq-irreducible curve whose arithmetic genus is 
denoted by πi. The evaluation map ev is injective if and only if the number N(f) of zero 
coordinates of the codeword ev(f) satisfies

N(f) < #X(Fq) (5)

for any f ∈ L(G) \ {0}. In this case the minimum distance d(X, G) of the code C(X, G)
satisfies

d(X,G) = #X(Fq) − max
f∈L(G)\{0}

N(f). (6)
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Let us remark now that by (4) we have

N(f) ≤
k∑

i=1
#Di(Fq) (7)

for any f ∈ L(G) \ {0}. Therefore, to get a lower bound on the minimum distance of the 
code C(X, G) it suffices to get two upper bounds:

• an upper bound on the number k of Fq-irreducible components of an effective divisor 
linearly equivalent to G

D =
k∑

i=1
niDi ∼ G;

• an upper bound on the number of rational points on each Fq-irreducible curves Di

in the support of D.

2.3. The parameters of codes over abelian surfaces

In this subsection we begin the estimation of the parameters of the code in the context 
of our work.

Let A be an abelian surface defined over Fq. We recall that the Weil polynomial of an 
abelian variety is the characteristic polynomial of the Frobenius endomorphism acting 
on its Tate module. Since A is here two-dimensional, it has by Weil theorem the shape

fA(t) = t4 − Tr(A)t3 + a2t
2 − qTr(A)t + q2. (8)

By the Riemann Hypothesis fA(t) = (t −ω1)(t −ω1)(t −ω2)(t −ω2) where ωi are complex 
numbers of modulus √q. The number Tr(A) = ω1 +ω1 +ω2 +ω2 is called the trace of A.

Let H be an ample divisor on A rational over Fq and r large enough so that rH is 
very ample (r ≥ 3 is sufficient by [15, III, §17]). Our goal is to derive from (6) a lower 
bound on the minimum distance of the code C(A, rH).

If the evaluation map ev is injective, then the dimension of C(A, rH) is equal to the 
dimension ℓ(rH) of the Riemann-Roch space L(rH) which can be computed using the 
Riemann-Roch theorem for surfaces. In the general setting of a divisor D on a surface 
X it states that (see [7, V, §1])

ℓ(D) − s(D) + ℓ(KX −D) = 1
2D.(D −KX) + 1 + pa(X)

where KX is the canonical divisor of X and pa(X) is the arithmetic genus of X, and 
where s(D) = dimFq

H1(X, L(D)) is the so-called superabundance of D in X.
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Since A is an abelian surface we have ([15, III, §16]) KA = 0 and pa(A) = −1. 
Moreover, if rH is very ample, then we can deduce from [7, V, Lemma 1.7] that ℓ(K −
rH) = ℓ(−rH) = 0 and that s(rH) = 0 ([15, III, §16]). So finally if the evaluation map 
ev is injective, i.e. if inequality (5) holds, we get the dimension of the code C(A, rH):

dimFq
L(rH) = r2H

2

2 .

We are now going to give a lower bound on the minimum distance of C(A, rH) using 
(6) and (7). Theorem 4 of [6] states that the number of rational points on a projective 
Fq-irreducible curve D defined over Fq of arithmetic genus π lying on an abelian surface 
A of trace Tr(A) is bounded by

#D(Fq) ≤ q + 1 − Tr(A) + |π − 2|⌊2√q⌋.

Hence, if we set m := ⌊2√q⌋, where ⌊x⌋ denotes the integer part of the real number x, 
from inequality (7) we get

N(f) ≤ k(q + 1 − Tr(A)) + m
k∑

i=1
|πi − 2|. (9)

With no hypotheses on the abelian surface nor on the arithmetic genera πi, we can only 
say that πi = 0 cannot occur and since πi ≥ |πi − 2| for πi ≥ 1, we have

N(f) ≤ k(q + 1 − Tr(A)) + m
k∑

i=1
πi. (10)

In order to use (10) to bound the minimum distance of the code C(A, rH), we need 
Lemma 2.1 below, giving upper bounds on the number k of irreducible components of 
the effective divisor D linearly equivalent to rH and on the sum of the arithmetic genera 
of its components Di. We recall for this purpose a generalisation of the adjunction 
formula which states that for a curve D of arithmetic genus π on a surface X we have 
D.(D + KX) = 2π − 2 ([7, §V, Exercise 1.3]). In the case of an abelian surface A for 
which KA = 0, this says that for any curve D of arithmetic genus π lying on A we have 
D2 = 2π − 2.

Lemma 2.1. Let D be an effective divisor linearly equivalent to rH, let D =
∑k

i=1 niDi

be its decomposition as a sum of Fq-irreducible curves and let πi be the arithmetic genus 
of Di for i = 1, . . . , k. Then we have

k∑

i=1
πi ≤ r2H

2

2 + k and k ≤ rH2.
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Proof. Applying Formula (3) to H and Di for every i, we get D2
iH

2 ≤ (Di.H)2. By the 
adjunction formula we have

πi − 1 ≤ (Di.H)2/(2H2). (11)

Indeed H2 > 0 by the Nakai-Moishezon criterion since H is ample.
Summing from i = 1 to k, we obtain

k∑

i=1
πi − k ≤ 1

2H2

k∑

i=1
(Di.H)2. (12)

We have also

k∑

i=1
(Di.H)2 =

(
k∑

i=1
Di.H

)2

−
k∑

i̸=j

(Di.H)(Dj .H)

≤
(

k∑

i=1
niDi.H

)2

−
k∑

i̸=j

(Di.H)(Dj .H)

≤ r2(H2)2,

(13)

where we used the facts that ni > 0, that D =
∑k

i=1 niDi is linearly (and hence 
numerically) equivalent to rH and that Di.H > 0 for every i = 1, . . . , k, thanks to 
Nakai-Moishezon criterion since H is ample. Now applying inequality (13) to inequality 
(12), we get

k∑

i=1
πi ≤

r2(H2)2
2H2 + k = r2H2

2 + k

which completes the proof of the first statement. Using that k ≤
∑k

i=1 niDi.H = rH2

we get the second one. !

As a consequence of Lemma 2.1 we can state the following theorem.

Theorem 2.2. Let A be an abelian surface defined over Fq of trace Tr(A). Let m = ⌊2√q⌋, 
H be an ample divisor on A rational over Fq and r be a positive integer large enough so 
that rH is very ample.

Then the minimum distance d(A, rH) of the code C(A, rH) satisfies

d(A, rH) ≥ #A(Fq) − rH2(q + 1 − Tr(A) + m) − r2m
H2

2 .

Proof. Using Lemma 2.1 together with (10) we get N(f) ≤ φ(k) with φ(k) := k(q + 1 −
Tr(A) + m) + mr2H2/2 and k ∈ [1, rH2]. This means that N(f) ≤ maxk∈[1,rH2]{φ(k)}. 
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Now remark that φ is an increasing linear function since | Tr(A)| ≤ 4√q, and hence 
gets its maximum when k = rH2. Therefore we have N(f) ≤ φ 

(
rH2), which implies 

d(A, rH) = #A(Fq) − max{N(f), f ∈ L(rH) \ {0}} ≥ #A(Fq) − φ 
(
rH2). The theorem 

is proved since φ 
(
rH2) = rH2(q + 1 − Tr(A) + m) + mr2H2/2. !

Remark 2.3. Let H be an ample divisor. Suppose that H is irreducible over Fq, but 
reducible on a Galois extension of prime degree e. Then H is a sum of e conjugate 
irreducible components such that the intersection points are also conjugates under the 
Galois group. Then, by Lemma 2.3 of [21], we have

k ≤ r
H2

e
.

Hence under this hypothesis we get a sharper bound on the number of irreducible com-
ponents of a divisor linearly equivalent to rH, thus a sharper bound for Theorem 2.2.

3. Codes from abelian surfaces with no small genus curves

We consider now evaluation codes C(A, rH) on abelian surfaces which contain no 
absolutely irreducible curves defined over Fq of arithmetic genus smaller than or equal 
to an integer ℓ.

Throughout this section A denotes a simple abelian surface defined over Fq. Let us 
remark that by Proposition 5 of [6] a simple abelian surface contains no irreducible curves 
of arithmetic genus 0 nor 1 defined over Fq. In particular, every absolutely irreducible 
curve on A has arithmetic genus greater than or equal to 2 and thus it is relevant to take 
ℓ ≥ 1.

Lemma 3.1. Let A be a simple abelian surface defined over Fq of trace Tr(A). Let ℓ be 
a positive integer such that for every absolutely irreducible curves of arithmetic genus π
lying on A we have π > ℓ. Let f be a nonzero function in L(rH) with associated effective 
rational divisor D =

∑k
i=1 niDi as given in equation (4). Write k = k1 + k2 where k1 is 

the number of Di which have arithmetic genus πi > ℓ and k2 is the number of Di which 
have arithmetic genus πi ≤ ℓ. Then

N(f) ≤ k1(q + 1 − Tr(A) − 2m) + m
k1∑

i=1
πi + k2(ℓ− 1), (14)

where πi > ℓ and where 
∑k1

i=1 πi is supposed to be zero if k1 = 0.

Proof. In order to prove the statement, let us recall that by Theorem 4 of [6] the num-
ber of rational points on an irreducible curve Di on A of arithmetic genus πi satisfies 
#Di(Fq) ≤ q + 1 − Tr(A) + m|πi − 2|. Since A is simple and hence πi ≥ 2, we get 
#Di(Fq) ≤ q+1 −Tr(A) −2m +mπi. Without loss of generality we consider {D1, . . . , Dk1}
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to be the set of the Di which have arithmetic genus πi > ℓ and {Dk1+1, . . . , Dk} to be 
the set of the k2 curves which have arithmetic genus πi ≤ ℓ. Thus, we get

k1∑

i=1
#Di(Fq) ≤ k1(q + 1 − Tr(A) − 2m) + m

k1∑

i=1
πi

where πi > ℓ. Under the hypothesis that any absolutely irreducible curve on A has 
arithmetic genus > ℓ, we have that the k2 curves that have arithmetic genus πi ≤ ℓ

are necessarily non absolutely irreducible. It is well-known (see for example the proof of 
Theorem 4 of [6]) that if Di is a non absolutely irreducible curve of arithmetic genus 
πi lying on an abelian surface, its number of rational points satisfies #Di(Fq) ≤ πi − 1. 
Hence summing on k2 we get

k∑

i=k1+1
#Di(Fq) ≤

k∑

i=k1+1
(πi − 1) ≤ k2(ℓ− 1).

The proof is now complete using inequality (7). !

In order to use inequality (14) to deduce a lower bound on the minimum distance of 
the code C(A, rH), it is sufficient to bound the numbers k1 and k2 and the sum 

∑k1
i=1 πi.

Lemma 3.2. With the same notations and under the same hypotheses as Lemma 3.1 we 
have:

(1) k1
√
ℓ + k2 ≤ r

√
H2

2 ,

(2)
∑k1

i=1 πi ≤ α2 + 2
√
ℓα + (ℓ + 1)k1, where α := r

√
H2

2 − k1
√
ℓ− k2.

Proof. Let us prove the first assertion. Since H is ample, by Nakai-Moishezon criterion 
we have that Di.H > 0 for every i = 1, . . . , k and H2 > 0. Thus, we can take the square 
root of inequality (11) in the proof of Lemma 2.1 and get 

√
πi − 1 ≤ Di.H/

√
2H2. Now 

taking into account that 1 ≤ πi − 1 since A is assumed to be simple, summing for 
i ∈ {1, . . . , k}, using that ni > 0 and that 

∑k
i=1 niDi.H = rH2, we obtain

k1∑

i=1

√
πi − 1 =

k∑

i=1

√
πi − 1 −

k∑

i=k1+1

√
πi − 1

≤
k∑

i=1

√
πi − 1 − k2

≤ 1√
2H2

k∑

i=1
niDi.H − k2
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= r

√
H2

2 − k2.

Considering the k1 curves that have arithmetic genus πi > ℓ, we have 
√
ℓ ≤

√
πi − 1 and 

so

k1
√
ℓ ≤

k1∑

i=1

√
πi − 1.

Thus we get

k1
√
ℓ + k2 ≤ r

√
H2

2 .

Let us now prove the last statement. For i = 1, . . . , k1, set si =
√
πi − 1−

√
ℓ. Under the 

hypothesis that πi ≥ ℓ + 1, the si are non-negative real numbers. Thus

k1∑

i=1
s2
i ≤

(
k1∑

i=1
si

)2

.

Moreover, we have seen above that

k1∑

i=1
si =

k1∑

i=1

√
πi − 1 − k1

√
ℓ ≤ r

√
H2

2 − k1
√
ℓ− k2 = α.

Therefore, since πi = (si +
√
ℓ)2 + 1 = s2

i + 2si
√
ℓ + ℓ + 1 for i ∈ {1, . . . , k1}, we have

k1∑

i=1
πi =

k1∑

i=1
s2
i + 2

√
ℓ

k1∑

i=1
si + (ℓ + 1)k1

≤
(

k1∑

i=1
si

)2

+ 2
√
ℓ

k1∑

i=1
si + (ℓ + 1)k1

≤ α2 + 2
√
ℓα + (ℓ + 1)k1,

(15)

which completes the proof of the lemma. !

We can now prove the following theorem.

Theorem 3.3. Let A be a simple abelian surface defined over Fq of trace Tr(A). Let 
m = ⌊2√q⌋, H be an ample divisor on A rational over Fq and r be a positive integer 
large enough so that rH is very ample. Moreover, let ℓ be a positive integer such that 
for every absolutely irreducible curves of arithmetic genus π lying on A we have π > ℓ. 
Then the minimum distance d(A, rH) of the code C(A, rH) satisfies
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d(A, rH) ≥ #A(Fq) − max
(⌊

r

√
H2

2

⌋
(ℓ− 1),ϕ(1),ϕ

(⌊
r

√
H2

2ℓ

⌋))
,

where

ϕ(x) :=m

(
r

√
H2

2 − x
√
ℓ

)2

+ 2m
√
ℓ

(
r

√
H2

2 − x
√
ℓ

)

+ x
(
q + 1 − Tr(A) + (ℓ− 1)(m−

√
ℓ)
)

+ r

√
H2

2 (ℓ− 1).

Proof. Recall that

d(A, rH) = #A(Fq) − max{N(f), f ∈ L(rH) \ {0}}.

The point of departure is the inequality (14). When k1 = 0, it simply implies that N(f)
is less than or equal to k2(ℓ − 1). If k1 > 0 we use point (2) of Lemma 3.2 to get

N(f) ≤ k1
(
q + 1 − Tr(A) + (ℓ− 1)

(
m−

√
ℓ
))

+ mα2 + 2m
√
ℓα

+ r

√
H2

2 (ℓ− 1) − α(ℓ− 1) (16)

where we have set α := r
√

H2

2 − k1
√
ℓ − k2. Now point (1) of Lemma 3.2 ensures that 

α ≥ 0 which enables to conclude that N(f) ≤ φ(k1, k2) where φ(k1, k2) is defined by

φ(k1, k2) =

⎧
⎪⎪⎨

⎪⎪⎩

k2(ℓ− 1) if k1 = 0
k1
(
q + 1 − Tr(A) + (ℓ− 1)

(
m−

√
ℓ
))

+mα2 + 2m
√
ℓα + r

√
H2

2 (ℓ− 1) if k1 > 0.

It thus remains to maximise the function φ(k1, k2) on the integer points inside the poly-
gon K defined by

K =
{

(k1, k2) | 0 ≤ k1, 0 ≤ k2, 1 ≤ k1 + k2,
√
ℓk1 + k2 ≤ r

√
H2

2

}

and represented below.
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First, in the case where k1 = 0 we notice that k2 ≤
⌊
r
√

H2

2

⌋
, which implies φ(0, k2) ≤

⌊
r
√

H2

2

⌋
(ℓ −1). Second, for a fixed positive value of k1 less than or equal to r

√
H2

2 we can 

consider φ as a degree-2 polynomial in α ≥ 0, namely φ(k1, k2) = mα(α+2
√
ℓ) +constant. 

This way, it is clear that the maximum of φ is reached for the maximal value of α, that 
is for the minimal value of k2 such that (k1, k2) ∈ K. Hence, for this second case we are 

reduced to maximise φ on the segment 
[
(1, 0),

(
r
√

H2

2ℓ , 0
)]

. As easily checked, φ is a 

convex function on this segment, so the maximum is reached at an extremal integer point, 
(1, 0) or 

(⌊
r
√

H2

2ℓ

⌋
, 0
)

. Finally, note that we have φ(x, 0) = ϕ(x), and the theorem is 
proved. !

Remark 3.4. Taking into account the term −α(ℓ −1) in the inequality (16) one sometimes 
obtains a slightly better bound than the one of Theorem 3.3 but whose expression is even 
more complicated.

Remark 3.5. The bound in Theorem 3.3 applies with ℓ = 1 on simple abelian surfaces 
since they do not contain absolutely irreducible curves of arithmetic genus 0 nor 1, as 
remarked at the beginning of this section. Note that for ℓ = 1 we have 

⌊
r
√

H2

2

⌋
(ℓ −1) = 0

and thus in this context we are reduced to consider the maximum between ϕ(1) and 

ϕ 
(⌊

r
√

H2

2

⌋)
in Theorem 3.3. In order to easily compare these two values, let us consider 

a weaker version of our theorem by removing the integer part. Indeed, ϕ 
(⌊

r
√

H2

2

⌋)
≤

ϕ 
(
r
√

H2

2

)
. Consequently we have d(A, rH) ≥ #A(Fq) −max

(
ϕ(1),ϕ

(
r
√

H2

2

))
and 

after some calculations we get
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d(A, rH) ≥

⎧
⎨

⎩
#A(Fq) − r

√
H2

2 (q + 1 − Tr(A)) if r ≤
√

2(q+1−Tr(A)−m)
m

√
H2 ,

#A(Fq) − (q + 1 − Tr(A) −m) −mr2 H2

2 otherwise.

In particular if A = Jac(C) is the Jacobian of a curve C of genus 2 which is simple, then 
by setting H = C with H2 = C2 = 2πC − 2 = 2 by the adjunction formula, we obtain

d(Jac(C), rC) ≥
{

# Jac(C)(Fq) − r#C(Fq) if r ≤ q+1−Tr(A)−2m
m ,

# Jac(C)(Fq) − #C(Fq) −m(r2 − 1) otherwise.

This bound coincides with the bound in the main theorem of [6].

Remark 3.6. We point out, using an elementary asymptotic analysis for large q and r, 
that our estimation of the minimum distance is better for larger ℓ. We assume that ℓ is 
small (for example ℓ is a fixed value) and that r = qρ for some ρ > 0. For simplicity, 
we also assume that H2 = 2 (see Section 5) and remove the integer part. Taking into 
account that | Tr(A)| ≤ 4√q yields to

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

r(ℓ− 1)
√

H2

2 ∼
q→∞

(ℓ− 1)qρ,
ϕ(1) ∼

q→∞
cqmax{1,2ρ+ 1

2},

ϕ

(
r
√

H2

2ℓ

)
∼

q→∞
1√
ℓ
q1+ρ,

where c = 1, 3 or 2 depending on whether ρ < 1/4, ρ = 1/4 or ρ > 1/4. Consequently, in 
this setting, the lower bound d∗obtained in Theorem 3.3 satisfies

⎧
⎨

⎩

#A(Fq) − d∗ ∼
q→∞

2q2ρ+ 1
2 if ρ ≥ 1

2 ,

#A(Fq) − d∗ ∼
q→∞

1√
ℓ
q1+ρ if 0 < ρ < 1

2 .

So for q sufficiently large and r = qρ with 0 < ρ < 1
2 , the bound in Theorem 3.3 obtained 

for ℓ = 2 for instance is better than the one obtained for ℓ = 1, that is for any simple 
abelian variety. We thus focus in the next section on the existence of simple abelian 
surfaces which do not contain absolutely irreducible curves of arithmetic genus 2.

4. Abelian surfaces without curves of genus 1 nor 2

In light of Remark 3.6, considering abelian surfaces without absolutely irreducible 
curves of small arithmetic genus will lead to a sharper lower bound on the minimum 
distance of the evaluation code C(A, rH). Hence in this section we look for abelian 
surfaces which satisfy the property not to contain absolutely irreducible curves defined 
over Fq of arithmetic genus 0, 1 nor 2.
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By the theorem of classification of Weil (see for instance [9, Th.1.3]), a principally 
polarized abelian surface defined over Fq is isomorphic to either the polarized Jacobian 
of a curve of genus 2 over Fq, either the product of two polarized elliptic curves over Fq

or either the Weil restriction from Fq2 to Fq of a polarized elliptic curve defined over Fq2 . 
It is straightforward to see that the Jacobian of a curve of genus 2 contains the curve 
itself and that the product of two elliptic curves contains copies of each of them.

It therefore remains two cases to consider. First, there is the case of abelian surfaces 
which do not admit a principal polarization. We prove in Proposition 4.2 that they 
always satisfy the desired property. Secondly, we give in Proposition 4.3 necessary and 
sufficient conditions for Weil restrictions of elliptic curves to satisfy the same property.

Throughout this section we will make use of the two following well-known results. An 
abelian surface contains a smooth absolutely irreducible curve of genus 1 if and only if 
it is isogenous to the product of two elliptic curves. Moreover, a simple abelian surface 
contains a smooth absolutely irreducible curve of genus 2 if and only if it is isogenous to 
the Jacobian of a curve of genus 2 (see [4, Proposition 2]). The following lemma gives 
necessarily and sufficient conditions to avoid the presence of non necessarily smooth
absolutely irreducible curves of low arithmetic genus.

Lemma 4.1. Let A be an abelian surface. Then the three following statements are equiv-
alent:

(1) A is simple and not isogenous to a Jacobian surface;
(2) A does not contain absolutely irreducible curves of arithmetic genus 0, 1 nor 2;
(3) A does not contain absolutely irreducible smooth curves of genus 0, 1 nor 2.

Proof. Let us prove that (1) ⇒ (2). Let A be a simple abelian surface which is not 
isogenous to the Jacobian of a curve of genus 2. Let C be an absolutely irreducible curve 
lying on A and let ν : C̃ +→ C be its normalisation map. The case of genus 0 and 1 is 
treated in [6, §2]. For the genus 2 case, assume by contradiction that π(C) = 2. We get 
g(C̃) = π(C) = 2 so C̃ = C is smooth and thus by Proposition 2 of [4] A is isogenous to 
the Jacobian of C, in contradiction with the hypotheses.

The implication (2) ⇒ (3) is trivial since for smooth curves the geometric and arith-
metic genus coincide.

Finally let us prove that (3) ⇒ (1). Assume by contradiction that A is not simple, 
hence A is isogenous to the product of two elliptic curves and thus it contains at least 
a smooth absolutely irreducible curve of genus 1, in contradiction with (3). Now assume 
that A is simple and isogenous to a Jacobian surface. Then by Proposition 2 of [4], A
contains a smooth absolutely irreducible curve of genus 2, again in contradiction with 
(3). This concludes the proof. !
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4.1. Non-principally polarized abelian surfaces

An isogeny class of abelian varieties over Fq is said to be not principally polarizable 
if it does not contain a principally polarizable abelian variety over Fq. The following 
proposition states that abelian surfaces which do not admit a principal polarization 
have naturally the property we are searching for.

Proposition 4.2. Let A be an abelian surface in a not principally polarizable isogeny class. 
Then A does not contain absolutely irreducible curves of arithmetic genus 0, 1 nor 2.

Proof. It is well-known that an abelian variety contains no curves of genus 0. Since A
is not isogenous to a principally polarizable abelian surface, it follows that it is not 
isogenous to a product of two elliptic curves nor to a Jacobian surface. By Lemma 4.1
we conclude the proof. !

To be concrete, let us recall here a characterisation of non-principally polarized isogeny 
class of abelian surfaces ([8, Th.1]) for which Theorem 3.3 applies with ℓ = 2. An isogeny 
class of abelian surfaces defined over Fq with Weil polynomial f(t) = t4+at3+bt2+qat +q2

is not principally polarizable if and only if the following three conditions are satisfied:

(1) a2 − b = q;
(2) b < 0;
(3) all prime divisors of b are congruent to 1 mod 3.

4.2. Weil restrictions of elliptic curves

Let k = Fq and K denotes an extension of finite degree [K : k] of k. Let E be an 
elliptic curve defined over K. The K/k-Weil restriction of scalars of E is an abelian 
variety WK/k(E) of dimension [K : k] defined over k (see [14, §16] for a presentation in 
terms of universal property and see [4, §3] for a constructive approach). We consider here 
the Fq2/Fq-Weil restriction of an elliptic curve E defined over Fq2 which is an abelian 
surface A defined over Fq.

Let fE/Fq2
(t) be the Weil polynomial of the elliptic curve E defined over Fq2 . Then 

the Weil polynomial of A over Fq is given (see [3, Prop 3.1]) by

fA/Fq
(t) = fE/Fq2

(t2). (17)

Since fE/Fq2
(t) = t2 − Tr(E/Fq2)t + q2 we have fA(t) = t4 − Tr(E/Fq2)t2 + q2, thus it 

follows from (8) that the trace of A over Fq is equal to 0. Moreover, since the number of 
Fq-rational points on an abelian variety A defined over Fq equals fA/Fq

(1), we get that 
the number of rational points on A = WFq2/Fq

(E) over Fq is the same as the number of 
rational points on E over Fq2 , i.e. we have #A(Fq) = fA/Fq

(1) = fE/Fq2
(1) = #E(Fq2).
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Proposition 4.3. Let q be a power of a prime p. Let E be an elliptic curve defined over Fq2

of Weil polynomial fE/Fq2
(t) = t2−Tr(E/Fq2)t +q2. Let A be the Fq2/Fq-Weil restriction 

of the elliptic curve E. Then A does not contain absolutely irreducible curves defined over 
Fq of arithmetic genus 0, 1 nor 2 if and only if one of the following conditions holds

(1) Tr(E/Fq2) = 2q − 1;
(2) p > 2 and Tr(E/Fq2) = 2q − 2;
(3) p ≡ 11 mod 12 or p = 3, q is a square and Tr(E/Fq2) = q;
(4) p = 2, q is nonsquare and Tr(E/Fq2) = q;
(5) q = 2 or q = 3 and Tr(E/Fq2) = 2q.

Proof. Let E be an elliptic curve defined over Fq2 and let A be the Fq2/Fq-Weil restriction 
of E. Let fA(t) = t4 + at3 + bt2 + qat + q2 be the Weil polynomial of A. Recall that we 
have fA(t) = t4 −Tr(E/Fq2)t2 + q2 by (17) and thus (a, b) = (0, − Tr(E/Fq2)). Theorem 
1.2-(2) with Table 1.2 in [9] gives necessary and sufficient conditions on the couple (a, b)
for a simple abelian surface with the corresponding Weil polynomial not to be isogenous 
to the Jacobian of a smooth curve of genus 2.

Let us suppose that the trace of the elliptic curve E over Fq2 does not fit one of the 
conditions (1)− (5). Let us remark that by Theorem 1.4 in [9] the first case of Table 1.2 
in [9, Theorem 1.2-(2)] corresponds to all simple abelian surfaces which do not admit a 
principal polarization. Moreover the cases (1)−(5) cover the remaining cases of Table 1.2. 
Then fA(t) does not represent an isogeny class of simple principally polarizable abelian 
surfaces not containing a Jacobian surface. Hence A is either not principally polarizable, 
or not simple or isogenous to the Jacobian of a curve of genus 2. In the first case A
would not be a Weil restriction of an elliptic curve since these last one admit a principal 
polarization. In the second case, A would contain a curve of genus 1 and finally in the 
third case it would contain a curve of genus 2. Thus we proved that if A does not contain 
absolutely irreducible curves defined over Fq of arithmetic genus 0, 1 nor 2 then one of 
conditions (1) − (5) holds.

Conversely, using again Table 1.2 in [9, Theorem 1.2-(2)] we get that in each case from
(1) to (5) of our proposition, the couple (0, − Tr(E/Fq2)) corresponds to simple abelian 
surfaces not isogenous to the Jacobian of a curve of genus 2. Therefore in these cases 
A does not contain absolutely irreducible smooth curves of geometric genus 0, 1 nor 2, 
and thus by Lemma 4.1, A does not contain absolutely irreducible curves of arithmetic 
genus 0, 1 nor 2. !

Remark 4.4. Let us mention two cases in which Weil restrictions of elliptic curves do 
contain curves of genus 1 or 2. First, if the elliptic curve E is defined over Fq, it is clearly 
a subvariety of A. Note that in Proposition 4.3 we do not need to suppose that the 
elliptic curve E defined over Fq2 is not defined over Fq because none of the elliptic curves 
with trace over Fq2 as in cases (1)-(5) is defined over Fq. Secondly, it is well-known that 
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there are Weil restrictions of elliptic curves that are isogenous to Jacobian surfaces (see 
for example [17]) which thus contain smooth curves of genus 2.

Remark 4.5. Let q2 = p2n with p prime. By Deuring theorem (see for instance [22, 
Th. 4.1]) for every integer β satisfying |β| ≤ 2q such that gcd(β, p) = 1, or β = ± 2q, 
or β = ± q and p ̸≡ 1 mod 3, there exists an elliptic curve of trace β over Fq2 . Using 
Deuring theorem it is easy to check the existence of an elliptic curve with the given trace 
for each of the five cases in the previous theorem.

Remark 4.6. Let us remark that the first bound in Theorem 3.3 becomes relevant for 
q ≥ B with B ≈ 4(

√
H2 + 1)2 and it is non-relevant for small q. Therefore case (5) of 

Proposition 4.3 does not give rise to practical cases.

Let us briefly outline the results obtained in the last sections. The surfaces arising in 
Propositions 4.2 and 4.3 give rise to codes for which the lower bound on the minimum 
distance of Theorem 3.3 applies with ℓ = 2. This is exactly the purpose of the proposition 
stated in the introduction.

We have exploited the fact that, for q sufficiently large and r = qρ with 0 < ρ < 1
2 , 

the bound obtained for ℓ = 2 improves the one obtained for ℓ = 1. Note also that under 
the same hypotheses the bound for ℓ = 3 improves the one for ℓ = 2. Hence it would 
be interesting in the future to investigate on the existence of abelian surfaces without 
absolutely irreducible curves of genus ≤ 3 lying on them.

5. To make explicit the lower bounds for the minimum distance

We now show how the terms #A(Fq), Tr(A) and H2 appearing in the lower bounds 
for the minimum distance d(A, rH) given in Theorems 2.2 and 3.3 can be computed 
in many cases. As already said in the introduction of Section 4, three cases have to 
be distinguished in the case of principally polarized abelian surfaces, according to Weil 
classification.

Let A be a principally polarized abelian surface defined over Fq with Weil polynomial 
fA(t) = (t −ω1)(t −ω1)(t −ω2)(t −ω2) where the ωi’s are complex numbers of modulus 
√
q. Then we get:

#A(Fq) = fA(1) = (1 − ω1)(1 − ω1)(1 − ω2)(1 − ω2).

From formula (8), we obtain:

Tr(A) = ω1 + ω1 + ω2 + ω2.

Moreover, for any divisor H on A, the adjunction formula gives

H2 = 2πH − 2.
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As recalled in Section 2, if the divisor H is ample then rH is very ample as soon as 
r ≥ 3.

(1) In case A is the Jacobian Jac(C) of a genus-2 curve C defined over Fq, the numerator 
PC(t) of the zeta function of C is equal to the reciprocal polynomial of the Weil 
polynomial fJac(C)(t):

PC(t) = t4fJac(C)

(1
t

)
= (1 − ω1t)(1 − ω1t)(1 − ω2t)(1 − ω2t).

Hence we obtain
{

#C(Fq) = q + 1 − (ω1 + ω1 + ω2 + ω2)
#C(Fq2) = q2 + 1 − (ω2

1 + ω2
1 + ω2

2 + ω2
2)

and thus

# Jac(C)(Fq) = 1
2(#C(Fq2) + #C(Fq)2) − q.

Now, choosing H = C for instance, we get an ample divisor with H2 = C2 =
2πC − 2 = 2.

(2) In case A is the product E1 × E2 of two elliptic curves E1 and E2 each partial 
trace Tr(Ei) = ωi + ωi is determined by #Ei(Fq) = q + 1 − Tr(Ei). So we have 
#A(Fq) = #E1(Fq) × #E2(Fq) and Tr(A) = Tr(E1) + Tr(E2).
Any choice of rational points Pi ∈ Ei leads to an ample divisor H = E1 × {P2} +
{P1} ×E2 such that H2 = (E1×{P2})2 +({P1} ×E2)2 +2(E1×{P2}).({P1} ×E2) =
0 + 0 + 2 × 1 = 2.

(3) In the last case where A = WFq2/Fq
(E) is the Fq2/Fq-Weil restriction of an elliptic 

curve E defined over Fq2 , then we have already seen in Subsection 4.2 that #A(Fq) =
#E(Fq2) and that Tr(A) = 0.
As an ample divisor on A, one can choose for instance H = E +Eq where Eq is the 
image of E by the generator σ : x +−→ xq of the Galois group Gal(Fq2/Fq). We thus 
have H2 = E2 + (Eq)2 + 2E.Eq = 0 + 0 + 2 × 1 = 2.
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